The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.

A new microcalorimetric method for recording the kinetic parameters k(cat), K(m) and K(i) of alpha-amylases using polysaccharides and oligosaccharides as substrates is described. This method is based on the heat released by glycosidic bond hydrolysis. The method has been developed to study the active site properties of the cold-active alpha-amylase produced by an Antarctic psychrophilic bacterium in comparison with its closest structural homolog from pig pancreas. It is shown that the psychrophilic alpha-amylase is more active on large macromolecular substrates and that the higher rate constants k(cat) are gained at the expense of a lower affinity for the substrate. The active site is able to accommodate larger inhibitory complexes, resulting in a mixed-type inhibition of starch hydrolysis by maltose. A method for recording the binding enthalpies by isothermal titration calorimetry in a low-affinity system has been developed, allowing analysis of the energetics of weak ligand binding using the allosteric activator chloride. It is shown that the low affinity of the psychrophilic alpha-amylase for chloride is entropically driven. The high enthalpic and entropic contributions of activator binding suggest large structural fluctuations between the free and the bound states of the cold-active enzyme. The kinetic and thermodynamic data for the psychrophilic alpha-amylase indicate that the strictly conserved side-chains involved in substrate binding and catalysis possess an improved mobility, responsible for activity in the cold, and resulting from the disappearance of stabilizing interactions far from the active site.[1]

References

 
WikiGenes - Universities