The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss.

Noise-induced hearing loss has been associated with alterations in cochlear blood flow. Our study analyzed the expression of Vascular Endothelial Growth Factor (VEGF) and its functional receptors, Flt-1 and Flk-1, in the cochlear structures of noise-exposed and unexposed guinea pigs. VEGF is a prototypical angiogenic agent, with multiple functions on vascular biology, ranging from vascular permeability to endothelial cell migration, proliferation, differentiation, and survival. Acoustic trauma was induced by a continuous pure tone of 6kHz, at 120dB SPL for 30min. Auditory function was evaluated by electrocochleographic recordings at 2-20kHz for 7 days. Noise-induced cochlear morphological changes were studied by immunohistochemistry and scanning electron microscopy. The expression of VEGF and its receptors was examined by immunohistochemistry and western blotting analysis. The hearing threshold shift reached a level of 60dB SPL on day 1 after trauma and underwent a partial recovery over time, reaching a value of about 20dB SPL on day 7. Outer hair cell loss was more prominent in the area located 14-16mm from the apex. Increased cochlear VEGF expression was observed in noise-exposed animals, in particular at the level of stria vascularis, spiral ligament, and spiral ganglion cells. No changes were observed in the expression of VEGF-receptors. Our data suggest a role for VEGF in the regulation of the vascular network in the inner ear after acoustic trauma and during auditory recovery, with potentially important clinical and therapeutic implications.[1]

References

  1. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss. Picciotti, P.M., Fetoni, A.R., Paludetti, G., Wolf, F.I., Torsello, A., Troiani, D., Ferraresi, A., Pola, R., Sergi, B. Hear. Res. (2006) [Pubmed]
 
WikiGenes - Universities