The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Ear, Inner

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ear, Inner


Psychiatry related information on Ear, Inner


High impact information on Ear, Inner

  • Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development [8].
  • Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair [9].
  • In addition, hearing is impaired in the mutant mice at the level of the inner ear, suggesting that urocortin is involved in the normal development of cochlear sensory-cell function [10].
  • Myosin-1c (also known as myosin-Ibeta) has been proposed to mediate the slow component of adaptation by hair cells, the sensory cells of the inner ear [11].
  • Retinoic acid rescues inner ear defects in Hoxa1 deficient mice [12].

Chemical compound and disease context of Ear, Inner

  • Although the symptom of vertigo had been well-recognized for several thousand years, it was not until the pioneering work of Prosper Ménière in the mid-19th century that it was appreciated that vertigo could originate from damage to the inner ear [13].
  • These findings will further our understanding of individual GC responsiveness to steroid treatment, and will help improve the development of pharmaceuticals to selectively target GR in the inner ear for individuals with increased sensitivity to acoustic trauma [14].
  • We first tested protection of the inner ear in Wistar rats receiving a single infusion of 16 mg CDDP/kg body weight with or without treatment with 100 mg/kg salicylate (bid) for 5 days beginning one day before the CDDP infusion [15].
  • The strong interaction between amine groups and PIP2 support the proposal that the latter is crucially involved in aminoglycoside toxicity in the inner ear and kidney [16].
  • In particular, the presence of vasopressin receptor mRNA in the inner ear supports the hypothesis of a relationship between high plasma vasopressin levels and endolymphatic hydrops [17].

Biological context of Ear, Inner


Anatomical context of Ear, Inner


Associations of Ear, Inner with chemical compounds

  • The inner ear Ush1c transcripts predicted several harmonin isoforms, some containing an additional coiled-coil domain and a proline- and serine-rich region [26].
  • Recent studies have focused on diverse pathways, including the initiation of actin polymerization, oncogenic tyrosine kinase control of cell transformation, and molecular motor involvement in adaptation of sensory cells of the inner ear [27].
  • The authors point out that Prosper Meniere's description of his syndrome (an inner-ear disorder) was not well known when Van Gogh died and that it often was misdiagnosed as epilepsy well into the 20th century [28].
  • Inner ear development, although not completely normal, can occur in the absence of TR DNA-binding, suggesting that an alternative and perhaps novel thyroid hormone-signaling pathway may mediate these effects [29].
  • Otogelin: a glycoprotein specific to the acellular membranes of the inner ear [30].

Gene context of Ear, Inner

  • Here we show that mice homozygous for a targeted disruption of Fgfr3 exhibit skeletal and inner ear defects [31].
  • The expression pattern of the murine EYA1 orthologue, Eya1, suggests a role in the development of all components of the inner ear, from the emergence of the otic placode [32].
  • Moreover, expression of Gjb3 was identified in rat inner ear tissue by RT-PCR [33].
  • The essential function of one of these claudins in the inner ear was established by identifying mutations in CLDN14 that cause nonsyndromic recessive deafness DFNB29 in two large consanguineous Pakistani families [34].
  • Moreover, transcripts of DSPP previously reported to be expressed specifically in teeth are also detected in the inner ear of mice [35].

Analytical, diagnostic and therapeutic context of Ear, Inner


  1. TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Kwan, K.Y., Allchorne, A.J., Vollrath, M.A., Christensen, A.P., Zhang, D.S., Woolf, C.J., Corey, D.P. Neuron (2006) [Pubmed]
  2. Spectrum of CHD7 Mutations in 110 Individuals with CHARGE Syndrome and Genotype-Phenotype Correlation. Lalani, S.R., Safiullah, A.M., Fernbach, S.D., Harutyunyan, K.G., Thaller, C., Peterson, L.E., McPherson, J.D., Gibbs, R.A., White, L.D., Hefner, M., Davenport, S.L., Graham, J.M., Bacino, C.A., Glass, N.L., Towbin, J.A., Craigen, W.J., Neish, S.R., Lin, A.E., Belmont, J.W. Am. J. Hum. Genet. (2006) [Pubmed]
  3. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Lyon, M.F., Scriver, C.R., Baker, L.R., Tenenhouse, H.S., Kronick, J., Mandla, S. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  4. Cochlin immunostaining of inner ear pathologic deposits and proteomic analysis in DFNA9 deafness and vestibular dysfunction. Robertson, N.G., Cremers, C.W., Huygen, P.L., Ikezono, T., Krastins, B., Kremer, H., Kuo, S.F., Liberman, M.C., Merchant, S.N., Miller, C.E., Nadol, J.B., Sarracino, D.A., Verhagen, W.I., Morton, C.C. Hum. Mol. Genet. (2006) [Pubmed]
  5. Platelet storage pool deficiency associated with inherited abnormalities of the inner ear in the mouse pigment mutants muted and mocha. Swank, R.T., Reddington, M., Howlett, O., Novak, E.K. Blood (1991) [Pubmed]
  6. Transient expression of NMDA receptors during rearrangement of AMPA-receptor-expressing fibers in the developing inner ear. Knipper, M., Köpschall, I., Rohbock, K., Köpke, A.K., Bonk, I., Zimmermann, U., Zenner, H. Cell Tissue Res. (1997) [Pubmed]
  7. Trks and p75 genes are differentially expressed in the inner ear of human embryos. What may Trks and p75 null mutant mice suggest on human development? Vega, J.A., San José, I., Cabo, R., Rodriguez, S., Represa, J. Neurosci. Lett. (1999) [Pubmed]
  8. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Tischfield, M.A., Bosley, T.M., Salih, M.A., Alorainy, I.A., Sener, E.C., Nester, M.J., Oystreck, D.T., Chan, W.M., Andrews, C., Erickson, R.P., Engle, E.C. Nat. Genet. (2005) [Pubmed]
  9. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Xu, Q., Wang, Y., Dabdoub, A., Smallwood, P.M., Williams, J., Woods, C., Kelley, M.W., Jiang, L., Tasman, W., Zhang, K., Nathans, J. Cell (2004) [Pubmed]
  10. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Vetter, D.E., Li, C., Zhao, L., Contarino, A., Liberman, M.C., Smith, G.W., Marchuk, Y., Koob, G.F., Heinemann, S.F., Vale, W., Lee, K.F. Nat. Genet. (2002) [Pubmed]
  11. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Holt, J.R., Gillespie, S.K., Provance, D.W., Shah, K., Shokat, K.M., Corey, D.P., Mercer, J.A., Gillespie, P.G. Cell (2002) [Pubmed]
  12. Retinoic acid rescues inner ear defects in Hoxa1 deficient mice. Pasqualetti, M., Neun, R., Davenne, M., Rijli, F.M. Nat. Genet. (2001) [Pubmed]
  13. Charles Skinner Hallpike and the beginnings of neurotology. Baloh, R.W. Neurology (2000) [Pubmed]
  14. NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma. Tahera, Y., Meltser, I., Johansson, P., Bian, Z., Stierna, P., Hansson, A.C., Canlon, B. J. Neurosci. Res. (2006) [Pubmed]
  15. Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Li, G., Sha, S.H., Zotova, E., Arezzo, J., Van de Water, T., Schacht, J. Lab. Invest. (2002) [Pubmed]
  16. The binding of polyamines to phospholipid bilayers. Yung, M.W., Green, C. Biochem. Pharmacol. (1986) [Pubmed]
  17. Vasopressin and oxytocin receptor mRNAs are expressed in the rat inner ear. Kitano, H., Takeda, T., Suzuki, M., Kitanishi, T., Yazawa, Y., Kitajima, K., Kimura, H., Tooyama, I. Neuroreport (1997) [Pubmed]
  18. Math1: an essential gene for the generation of inner ear hair cells. Bermingham, N.A., Hassan, B.A., Price, S.D., Vollrath, M.A., Ben-Arie, N., Eatock, R.A., Bellen, H.J., Lysakowski, A., Zoghbi, H.Y. Science (1999) [Pubmed]
  19. Specification of the mammalian cochlea is dependent on Sonic hedgehog. Riccomagno, M.M., Martinu, L., Mulheisen, M., Wu, D.K., Epstein, D.J. Genes Dev. (2002) [Pubmed]
  20. Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. Tran Ba Huy, P., Bernard, P., Schacht, J. J. Clin. Invest. (1986) [Pubmed]
  21. Patterning of the mammalian cochlea. Cantos, R., Cole, L.K., Acampora, D., Simeone, A., Wu, D.K. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  22. Glycosyl-phosphatidylinositol/inositol phosphoglycan: a signaling system for the low-affinity nerve growth factor receptor. Represa, J., Avila, M.A., Miner, C., Giraldez, F., Romero, G., Clemente, R., Mato, J.M., Varela-Nieto, I. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  23. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1. Littlewood Evans, A., Müller, U. Nat. Genet. (2000) [Pubmed]
  24. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Estévez, R., Boettger, T., Stein, V., Birkenhäger, R., Otto, E., Hildebrandt, F., Jentsch, T.J. Nature (2001) [Pubmed]
  25. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Forge, A., Li, L., Corwin, J.T., Nevill, G. Science (1993) [Pubmed]
  26. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Verpy, E., Leibovici, M., Zwaenepoel, I., Liu, X.Z., Gal, A., Salem, N., Mansour, A., Blanchard, S., Kobayashi, I., Keats, B.J., Slim, R., Petit, C. Nat. Genet. (2000) [Pubmed]
  27. The emerging power of chemical genetics. Specht, K.M., Shokat, K.M. Curr. Opin. Cell Biol. (2002) [Pubmed]
  28. Van Gogh had Menière's disease and not epilepsy. Arenberg, I.K., Countryman, L.F., Bernstein, L.H., Shambaugh, G.E. JAMA (1990) [Pubmed]
  29. Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. Shibusawa, N., Hashimoto, K., Nikrodhanond, A.A., Liberman, M.C., Applebury, M.L., Liao, X.H., Robbins, J.T., Refetoff, S., Cohen, R.N., Wondisford, F.E. J. Clin. Invest. (2003) [Pubmed]
  30. Otogelin: a glycoprotein specific to the acellular membranes of the inner ear. Cohen-Salmon, M., El-Amraoui, A., Leibovici, M., Petit, C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  31. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G., Ornitz, D.M. Nat. Genet. (1996) [Pubmed]
  32. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Abdelhak, S., Kalatzis, V., Heilig, R., Compain, S., Samson, D., Vincent, C., Weil, D., Cruaud, C., Sahly, I., Leibovici, M., Bitner-Glindzicz, M., Francis, M., Lacombe, D., Vigneron, J., Charachon, R., Boven, K., Bedbeder, P., Van Regemorter, N., Weissenbach, J., Petit, C. Nat. Genet. (1997) [Pubmed]
  33. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Xia, J.H., Liu, C.Y., Tang, B.S., Pan, Q., Huang, L., Dai, H.P., Zhang, B.R., Xie, W., Hu, D.X., Zheng, D., Shi, X.L., Wang, D.A., Xia, K., Yu, K.P., Liao, X.D., Feng, Y., Yang, Y.F., Xiao, J.Y., Xie, D.H., Huang, J.Z. Nat. Genet. (1998) [Pubmed]
  34. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Wilcox, E.R., Burton, Q.L., Naz, S., Riazuddin, S., Smith, T.N., Ploplis, B., Belyantseva, I., Ben-Yosef, T., Liburd, N.A., Morell, R.J., Kachar, B., Wu, D.K., Griffith, A.J., Riazuddin, S., Friedman, T.B. Cell (2001) [Pubmed]
  35. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Xiao, S., Yu, C., Chou, X., Yuan, W., Wang, Y., Bu, L., Fu, G., Qian, M., Yang, J., Shi, Y., Hu, L., Han, B., Wang, Z., Huang, W., Liu, J., Chen, Z., Zhao, G., Kong, X. Nat. Genet. (2001) [Pubmed]
  36. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Everett, L.A., Morsli, H., Wu, D.K., Green, E.D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  37. NOX3, a superoxide-generating NADPH oxidase of the inner ear. Bánfi, B., Malgrange, B., Knisz, J., Steger, K., Dubois-Dauphin, M., Krause, K.H. J. Biol. Chem. (2004) [Pubmed]
  38. Pharmacokinetics of gentamicin in perilymph and endolymph of the rat as determined by radioimmunoassay. Tran Ba Huy, P., Manuel, C., Meulemans, A., Sterkers, O., Amiel, C. J. Infect. Dis. (1981) [Pubmed]
  39. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials. Zhang, S.Y., Robertson, D., Yates, G., Everett, A. J. Neurophysiol. (1999) [Pubmed]
WikiGenes - Universities