The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Stria Vascularis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Stria Vascularis


High impact information on Stria Vascularis


Chemical compound and disease context of Stria Vascularis


Biological context of Stria Vascularis


Anatomical context of Stria Vascularis


Associations of Stria Vascularis with chemical compounds

  • Because EP was depressed by vascular perfusion of Ba2+, an inhibitor of inwardly rectifying K+ (Kir) channels, but not by either 4-aminopyridine or tetraethylammonium, we examined the expression of Kir channel subunits in cochlear stria vascularis, the tissue that is supposed to play the central role in the generation of positive EP [7].
  • The phospholipase C-gamma isozymes were expressed in supporting cells, the stria vascularis, and certain fibrocytes where they possibly participate in activating tyrosine kinase and modulating ion conductances [16].
  • A tubulo-cisternal endoplasmic reticulum system in the potassium transporting marginal cells of the stria vascularis and effects of the ototoxic diuretic ethacrynic acid [26].
  • In the stria vascularis, gold particles were sparse over the endolymphatic luminal surface of the marginal cells but were numerous over the basolateral membrane [27].
  • The application of 1 mM ouabain and removal of external K+ caused a most striking increase in [Na+]i of the suprastrial fibrocytes, followed by the stria vascularis and the type II fibrocytes, but no detectable response in the type I fibrocytes [28].

Gene context of Stria Vascularis


Analytical, diagnostic and therapeutic context of Stria Vascularis


  1. Cochlear origin of hearing loss in MELAS syndrome. Sue, C.M., Lipsett, L.J., Crimmins, D.S., Tsang, C.S., Boyages, S.C., Presgrave, C.M., Gibson, W.P., Byrne, E., Morris, J.G. Ann. Neurol. (1998) [Pubmed]
  2. Effects of organic acids on the edema of the stria vascularis induced by furosemide. Rybak, L.P., Whitworth, C., Weberg, A., Scott, V. Hear. Res. (1992) [Pubmed]
  3. Expression of midkine in the cochlea. Jia, X.Q., Nakashima, T., Kadomatsu, K., Muramatsu, T. Hear. Res. (2001) [Pubmed]
  4. Breakdown of stria vascularis blood-labyrinth barrier in C3H/lpr autoimmune disease mice. Lin, D.W., Trune, D.R. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (1997) [Pubmed]
  5. Effects of vanadate on EP and its distribution in guinea pig cochlea. Nakano, T., Morimitsu, T. Acta oto-laryngologica. Supplementum. (1988) [Pubmed]
  6. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Neyroud, N., Tesson, F., Denjoy, I., Leibovici, M., Donger, C., Barhanin, J., Fauré, S., Gary, F., Coumel, P., Petit, C., Schwartz, K., Guicheney, P. Nat. Genet. (1997) [Pubmed]
  7. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. Hibino, H., Horio, Y., Inanobe, A., Doi, K., Ito, M., Yamada, M., Gotow, T., Uchiyama, Y., Kawamura, M., Kubo, T., Kurachi, Y. J. Neurosci. (1997) [Pubmed]
  8. Functional consequences of polyamine synthesis inhibition by L-alpha-difluoromethylornithine (DFMO): cellular mechanisms for DFMO-mediated ototoxicity. Nie, L., Feng, W., Diaz, R., Gratton, M.A., Doyle, K.J., Yamoah, E.N. J. Biol. Chem. (2005) [Pubmed]
  9. Gap junction systems in the mammalian cochlea. Kikuchi, T., Kimura, R.S., Paul, D.L., Takasaka, T., Adams, J.C. Brain Res. Brain Res. Rev. (2000) [Pubmed]
  10. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. Kitajiri, S., Miyamoto, T., Mineharu, A., Sonoda, N., Furuse, K., Hata, M., Sasaki, H., Mori, Y., Kubota, T., Ito, J., Furuse, M., Tsukita, S. J. Cell. Sci. (2004) [Pubmed]
  11. Aldosterone and prednisolone control of cochlear function in MRL/MpJ-Fas(lpr) autoimmune mice. Trune, D.R., Kempton, J.B. Hear. Res. (2001) [Pubmed]
  12. Mechanisms of apoptosis induced by cisplatin in marginal cells in mouse stria vascularis. Lee, J.E., Nakagawa, T., Kita, T., Kim, T.S., Iguchi, F., Endo, T., Shiga, A., Lee, S.H., Ito, J. ORL J. Otorhinolaryngol. Relat. Spec. (2004) [Pubmed]
  13. Functional and morphological findings of endolymphatic sac. Morgenstern, C., Miyamoto, H., Arnold, W., Vosteen, K.H. Acta Otolaryngol. (1982) [Pubmed]
  14. Mannitol-induced stria vascularis edema. Duvall, A.J., Hukee, M.J., Santi, P.A. Archives of otolaryngology (Chicago, Ill. : 1960) (1981) [Pubmed]
  15. Response of EP and cochlear blood flow to angiotensin II during hypoxic condition. Yamamoto, H., Makimoto, K. Auris, nasus, larynx. (1998) [Pubmed]
  16. Immunohistochemical localization of phospholipase C isozymes in mature and developing gerbil cochlea. Okamura, H., Spicer, S.S., Schulte, B.A. Neuroscience (2001) [Pubmed]
  17. Expression of CLC-KB gene promoter in the mouse cochlea. Maehara, H., Okamura, H.O., Kobayashi, K., Uchida, S., Sasaki, S., Kitamura, K. Neuroreport (2003) [Pubmed]
  18. Adenylate energy charge, energy status, and phosphorylation state of stria vascularis under metabolic stress. Thalmann, R., Marcus, N.Y., Thalmann, I. Laryngoscope (1978) [Pubmed]
  19. Mineralocorticoid receptor mediates glucocorticoid treatment effects in the autoimmune mouse ear. Trune, D.R., Kempton, J.B., Gross, N.D. Hear. Res. (2006) [Pubmed]
  20. Cisplatin-induced apoptotic cell death in Mongolian gerbil cochlea. Alam, S.A., Ikeda, K., Oshima, T., Suzuki, M., Kawase, T., Kikuchi, T., Takasaka, T. Hear. Res. (2000) [Pubmed]
  21. Cholesterol distribution in cells of the stria vascularis of the mammalian cochlea and some effects of ototoxic diuretics. Forge, A. J. Cell. Sci. (1985) [Pubmed]
  22. The role of Pax2 in mouse inner ear development. Burton, Q., Cole, L.K., Mulheisen, M., Chang, W., Wu, D.K. Dev. Biol. (2004) [Pubmed]
  23. Co-localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibers innervating cochlear and vertebro-basilar arteries. Vass, Z., Dai, C.F., Steyger, P.S., Jancsó, G., Trune, D.R., Nuttall, A.L. Neuroscience (2004) [Pubmed]
  24. Melatonin and other serotonin derivatives in the guinea pig membranous cochlea. Biesalski, H.K., Welker, H.A., Thalmann, R., Vollrath, L. Neurosci. Lett. (1988) [Pubmed]
  25. Cisplatin ototoxicity involves organ of Corti, stria vascularis and spiral ganglion: modulation by alphaMSH and ORG 2766. Hamers, F.P., Wijbenga, J., Wolters, F.L., Klis, S.F., Sluyter, S., Smoorenburg, G.F. Audiol. Neurootol. (2003) [Pubmed]
  26. A tubulo-cisternal endoplasmic reticulum system in the potassium transporting marginal cells of the stria vascularis and effects of the ototoxic diuretic ethacrynic acid. Forge, A. Cell Tissue Res. (1982) [Pubmed]
  27. Quantitative immunocytochemical localization of Na+,K+-ATPase alpha-subunit in the lateral wall of rat cochlear duct. Iwano, T., Yamamoto, A., Omori, K., Akayama, M., Kumazawa, T., Tashiro, Y. J. Histochem. Cytochem. (1989) [Pubmed]
  28. Na+,K(+)-ATPase activity in the cochlear lateral wall of the gerbil. Furukawa, M., Ikeda, K., Takeuchi, S., Oshima, T., Kikuchi, T., Takasaka, T. Neurosci. Lett. (1996) [Pubmed]
  29. Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea. López-Bigas, N., Arbonés, M.L., Estivill, X., Simonneau, L. Mech. Dev. (2002) [Pubmed]
  30. Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development. Coppens, A.G., Kiss, R., Heizmann, C.W., Schäfer, B.W., Poncelet, L. Brain Res. Dev. Brain Res. (2001) [Pubmed]
  31. Expression of aquaporin 1 and 5 in the developing mouse inner ear and audiovestibular assessment of an Aqp5 null mutant. Merves, M., Krane, C.M., Dou, H., Greinwald, J.H., Menon, A.G., Choo, D. J. Assoc. Res. Otolaryngol. (2003) [Pubmed]
  32. Developmental expression of aquaporin 2 in the mouse inner ear. Merves, M., Bobbitt, B., Parker, K., Kishore, B.K., Choo, D. Laryngoscope (2000) [Pubmed]
  33. Expression of Trk A receptors in the mammalian inner ear. Dai, C.F., Steyger, P.S., Wang, Z.M., Vass, Z., Nuttall, A.L. Hear. Res. (2004) [Pubmed]
  34. Expression patterns of connexin 29 (GJE1) in mouse and rat cochlea. Yang, J.J., Liao, P.J., Su, C.C., Li, S.Y. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  35. Cell volume density alterations within the stria vascularis after administration of a hyperosmotic agent. Santi, P.A., Lakhani, B.N., Edwards, L.B., Morizono, T. Hear. Res. (1985) [Pubmed]
  36. Cisplatin ototoxicity in guinea pigs with special reference to toxic effects in the stria vascularis. Kohn, S., Fradis, M., Pratt, H., Zidan, J., Podoshin, L., Robinson, E., Nir, I. Laryngoscope (1988) [Pubmed]
  37. Expression of CLC-K chloride channels in the rat cochlea. Qu, C., Liang, F., Hu, W., Shen, Z., Spicer, S.S., Schulte, B.A. Hear. Res. (2006) [Pubmed]
  38. Effect of ethacrynic acid on the stria vascularis. Horn, K.L., Langley, L.R., Gates, G.A. Archives of otolaryngology (Chicago, Ill. : 1960) (1977) [Pubmed]
WikiGenes - Universities