Expression and possible mechanism of c-ski, a novel tissue repair-related gene during normal and radiation-impaired wound healing.
C-ski is a complicated regulating factor for fibroblast proliferation and an important co-repressor of Smad3. Although inhibiting Smad3 activity can markedly promote wound healing because Smad3 mediates the role of transforming growth factor-beta in inhibiting cell proliferation and inducing cell apoptosis; there has been no report on whether c-ski is expressed during wound healing and the relationship between its expression and wound healing. By establishing animal models of normal and radiation-impaired wound healing and using immunohistochemistry, in situ hybridization, and reverse transcription-polymerase chain reaction, we found that c-ski was expressed after wounding and reached its peak on day 9 and then significantly decreased. C-ski was present in all repair cells, and was especially prominent in fibroblasts. Compared with the control side, the irradiated side showed a lower expression of c-ski on postwound days 3-9, but higher on day 15, and not significantly different after the wound was healed. The expression of Smad3 was in contrast to the c-ski and cellular proliferation was similar to that of c-ski expression. The apoptosis index was significantly higher on the irradiated side on days 3-9 compared with the control side. In vitro, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide results showed that c-ski could reverse the inhibitory role of Smad3 on fibroblast proliferation. Flow cytometry analysis found that c-ski also diminished fibroblast apoptosis induced by Smad3 transfection. These results suggest that there is not only obvious expression of this regulatory protein but there is also a significant change in the levels of c-ski during wound healing. Its in vivo expression pattern and experiments in vitro suggest that c-ski may be involved in tissue repair by repressing Smad3 activity. Radiation can reduce c-ski and increase Smad3 expression, resulting in elevated Smad3 activity, resulting in diminished cell proliferation, cell apoptosis, and wound-healing delays.[1]References
- Expression and possible mechanism of c-ski, a novel tissue repair-related gene during normal and radiation-impaired wound healing. Liu, X., Zhang, E., Li, P., Liu, J., Zhou, P., Gu, D.Y., Chen, X., Cheng, T., Zhou, Y. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg