Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol-gel membrane for glucose and ATP detections.
The co-immobilization of glucose oxidase (GOD) and hexokinase/glucose-6-phosphate dehydrogenase (HEX) in the silica hybrid sol-gel film for development of amperometric biosensors was investigated. The silica hybrid film fabricated by hydrolysis of the mixture of tetraethyl orthosilicate and 3-(trimethoxysiyl)propyl methacrylate possessed a three-dimension vesicle structure and good uniformity and conformability, and was ready for enzyme immobilization. The electrochemical and spectroscopic measurements showed that the silica hybrid sol-gel provided excellent matrice for the enzyme immobilization and that the immobilized enzyme retained its bioactivity effectively. The immobilized GOD could catalyze the oxidation of glucose, which could be used to determine glucose at +1.0V without help of any mediator. The competition between GOD and HEX for the substrate glucose involving ATP as a co-substrate led to a decrease of the glucose response, which allowed us to develop an ATP sensor with a good stability. The fabricated silica hybrid sol-gel matrice offered a stage for further study of immobilization and electrochemistry of proteins.[1]References
- Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol-gel membrane for glucose and ATP detections. Liu, S., Sun, Y. Biosensors & bioelectronics (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg