The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.

A plant- and crop-based renewable plastic, poly-lactic acid (PLA), is receiving attention as a new material for a sustainable society in place of petroleum-based plastics. We constructed a metabolically engineered Saccharomyces cerevisiae that has both pyruvate decarboxylase genes (PDC1 and PDC5) disrupted in the genetic background to express two copies of the bovine L-lactate dehydrogenase (LDH) gene. With this recombinant, the yield of lactate was 82.3 g/liter, up to 81.5% of the glucose being transformed into lactic acid on neutralizing cultivation, although pdc1 pdc5 double disruption led to ineffective decreases in cell growth and fermentation speed. This strain showed lactate productivity improvement as much as 1.5 times higher than the previous strain. This production yield is the highest value for a lactic acid-producing yeast yet reported.[1]

References

  1. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Ishida, N., Saitoh, S., Onishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Takahashi, H. Biosci. Biotechnol. Biochem. (2006) [Pubmed]
 
WikiGenes - Universities