The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

PseG of pseudaminic acid biosynthesis: a UDP-sugar hydrolase as a masked glycosyltransferase.

The flagellin proteins in pathogenic bacteria such as Campylobacter jejuni and Helicobacter pylori are heavily glycosylated with the nine-carbon alpha-keto acid, pseudaminic acid. The presence of this posttranslational modification is absolutely required for assembly of functional flagella. Since motility is required for colonization, pseudaminic acid biosynthesis represents a virulence factor in these bacteria. Pseudaminic acid is generated from UDP-N-acetylglucosamine in five biosynthetic steps. The final step has been shown to involve the condensation of 2,4-diacetamido-2,4,6-trideoxy-L-altrose (6-deoxy-Altdi-NAc) with phosphoenolpyruvate as catalyzed by the enzyme pseudaminic acid synthase, NeuB3. The 6-deoxy-AltdiNAc used in this process is generated from its nucleotide-linked form, UDP-6-deoxy-AltdiNAc, by the action of a hydrolase that cleaves the glycosidic bond and releases UDP. This manuscript describes the first characterization of a UDP-6-deoxy-AltdiNAc hydrolase, namely PseG (Cj1312) from C. jejuni. The activity of this enzyme is independent of the presence of divalent metal ions, and the values of the catalytic constants were found to be k(cat) = 27 s(-1) and K(m) = 174 microm. The enzyme was shown to hydrolyze the substrate with an overall inversion of stereochemistry at C-1 and to utilize a C-O bond cleavage mechanism during catalysis. These results, coupled with homology comparisons, suggest that the closest ancestors to the hydrolase are members of the metal-independent GT-B family of glycosyltransferases that include the enzyme MurG.[1]


WikiGenes - Universities