The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Flagella

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Flagella

  • Geobacter metallireducens specifically expresses flagella and pili only when grown on insoluble Fe(III) or Mn(IV) oxide, and is chemotactic towards Fe(II) and Mn(II) under these conditions [1].
  • This motility-linked symbiosis resembles the association of locomotory spirochetes with the Australian termite flagellate Mixotricha (Cleveland, L. R., and A. V. Grimstone, 1964, Proc. R. Soc. Lond. B Biol. Sci., 159:668-686), except that in our case propulsion is provided by bacterial flagella themselves [2].
  • Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions [3].
  • Growth in the presence of cyclic GMP derivatives resulted in the loss of flagella and pili formation and concomitant resistance to both DNA phage phiCbK and RNA phage phiCb5 infection without affecting growth rate, stalk formation, and equatorial cell division [4].
  • In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors [5].
 

Psychiatry related information on Flagella

  • Interestingly, the remaining DHC1b is normally distributed in the mutant flagella, strongly suggesting that the defect is in binding of cargo to the retrograde motor rather than in motor activity per se [6].
 

High impact information on Flagella

  • We identify a cGMP-dependent protein kinase (CrPKG) within flagella as the substrate of a protein tyrosine kinase activated by flagellar adhesion during fertilization [7].
  • We show that this novel protein localizes to basal bodies in mouse and C. elegans, is under the regulatory control of daf-19, and is necessary for the generation of both cilia and flagella [8].
  • Two dyneins have been isolated from axonemes of Chlamydomonas flagella by a three step procedure consisting of extraction in a high salt containing buffer, hydroxyapatite chromatography and sedimentation in sucrose gradient [9].
  • Flagellin, the protomeric subunit of bacterial flagella, contains no cysteine [10].
  • In sea urchin sperm flagella, axonemal microtubules are found to be stabilized by a protein identical to histone H1, a result that defines a new role for this histone and provides evidence for a concerted evolution of chromatin and microtubular structures [11].
 

Chemical compound and disease context of Flagella

 

Biological context of Flagella

 

Anatomical context of Flagella

  • This knowledge is fundamental for understanding the sites, molecular targets and mechanisms of action of Ca(2+) within the cilium of flagellum [22].
  • Near the end of spermiogenesis, basonuclin also accumulated in the acrosome and mitochondrial sheath surrounding the flagellum [23].
  • Antibodies to tubulin reacted with both the disk and flagella in isolated cytoskeletons but bound only to the microtubules in these structures [24].
  • Adenylate cyclase activity was detected in both the gamete cell body and flagella, with the highest specific activity displayed in flagellar membrane fractions [25].
  • In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR [26].
 

Associations of Flagella with chemical compounds

  • Local reactivation of Triton-extracted flagella by iontophoretic application of ATP [27].
  • Lithium reversibly inhibits microtubule-based motility in sperm flagella [28].
  • We have found that EHNA has an unusual effect on the flagella of Leishmania promastigotes in that it alters both the waveform and polarity of the beat [29].
  • The flagellar apparatus (both flagella with basal bodies and accessory structures) of Chlamydomonas reinhardtii was isolated from a wall-less mutant and induced to swim in the presence of adenosine triphosphate [30].
  • This article focuses on the initial steps of this regulation: how and where Ca(2+) enters cilia and flagella to trigger specific changes in axonemal motility [22].
 

Gene context of Flagella

  • We conclude that Pcnt, IFTs, and PC2 form a complex in vertebrate cells that is required for assembly of primary cilia and possibly motile cilia and flagella [31].
  • Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly [32].
  • Flagellar growth continued within the short rn null cysts to produce large bulbous terminations of intertwined mature flagella [33].
  • BACKGROUND: Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types [34].
  • IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia [35].
 

Analytical, diagnostic and therapeutic context of Flagella

References

  1. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Childers, S.E., Ciufo, S., Lovley, D.R. Nature (2002) [Pubmed]
  2. Flagellated ectosymbiotic bacteria propel a eucaryotic cell. Tamm, S.L. J. Cell Biol. (1982) [Pubmed]
  3. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Motaleb, M.A., Corum, L., Bono, J.L., Elias, A.F., Rosa, P., Samuels, D.S., Charon, N.W. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  4. Effect of 3':5'-cyclic GMP derivatives on the formation of Caulobacter surface structures. Kurn, N., Shapiro, L. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  5. Bacterial plasminogen activators and receptors. Lähteenmäki, K., Kuusela, P., Korhonen, T.K. FEMS Microbiol. Rev. (2001) [Pubmed]
  6. A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Hou, Y., Pazour, G.J., Witman, G.B. Mol. Biol. Cell (2004) [Pubmed]
  7. Intraflagellar transport particles participate directly in cilium-generated signaling in chlamydomonas. Wang, Q., Pan, J., Snell, W.J. Cell (2006) [Pubmed]
  8. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Li, J.B., Gerdes, J.M., Haycraft, C.J., Fan, Y., Teslovich, T.M., May-Simera, H., Li, H., Blacque, O.E., Li, L., Leitch, C.C., Lewis, R.A., Green, J.S., Parfrey, P.S., Leroux, M.R., Davidson, W.S., Beales, P.L., Guay-Woodford, L.M., Yoder, B.K., Stormo, G.D., Katsanis, N., Dutcher, S.K. Cell (2004) [Pubmed]
  9. Inner arm dyneins from flagella of Chlamydomonas reinhardtii. Piperno, G., Luck, D.J. Cell (1981) [Pubmed]
  10. Mistranslation in E. coli. Edelmann, P., Gallant, J. Cell (1977) [Pubmed]
  11. Stabilization of sea urchin flagellar microtubules by histone H1. Multigner, L., Gagnon, J., Van Dorsselaer, A., Job, D. Nature (1992) [Pubmed]
  12. Parenteral application of a Pseudomonas aeruginosa flagella vaccine elicits specific anti-flagella antibodies in the airways of healthy individuals. Döring, G., Pfeiffer, C., Weber, U., Mohr-Pennert, A., Dorner, F. Am. J. Respir. Crit. Care Med. (1995) [Pubmed]
  13. Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor. Kojima, S., Atsumi, T., Muramoto, K., Kudo, S., Kawagishi, I., Homma, M. J. Mol. Biol. (1997) [Pubmed]
  14. Legionella pneumophila-induced suppression of macrophage spreading in vitro. Friedman, M., Klein, T.W., Friedman, H. Infect. Immun. (1983) [Pubmed]
  15. Immunogenicity of Streptococcus pneumoniae type 14 capsular polysaccharide: influence of carriers and adjuvants on isotype distribution. van de Wijgert, J.H., Verheul, A.F., Snippe, H., Check, I.J., Hunter, R.L. Infect. Immun. (1991) [Pubmed]
  16. Detection of flagella in 278 Legionella strains by latex reagent sensitized with antiflagellum immunoglobulins. Bornstein, N., Marmet, D., Dumaine, M.H., Surgot, M., Fleurette, J. J. Clin. Microbiol. (1991) [Pubmed]
  17. The tubulin fraternity: alpha to eta. Dutcher, S.K. Curr. Opin. Cell Biol. (2001) [Pubmed]
  18. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Park, S.Y., Chao, X., Gonzalez-Bonet, G., Beel, B.D., Bilwes, A.M., Crane, B.R. Mol. Cell (2004) [Pubmed]
  19. Synthesis and mobilization of flagellar glycoproteins during regeneration in Euglena. Geetha-Habib, M., Bouck, G.B. J. Cell Biol. (1982) [Pubmed]
  20. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. Kohl, L., Robinson, D., Bastin, P. EMBO J. (2003) [Pubmed]
  21. Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms. Okagaki, T., Kamiya, R. J. Cell Biol. (1986) [Pubmed]
  22. Ca2+ channels and signalling in cilia and flagella. Tamm, S. Trends Cell Biol. (1994) [Pubmed]
  23. An unexpected localization of basonuclin in the centrosome, mitochondria, and acrosome of developing spermatids. Yang, Z., Gallicano, G.I., Yu, Q.C., Fuchs, E. J. Cell Biol. (1997) [Pubmed]
  24. Ultrastructural localization of giardins to the edges of disk microribbons of Giarida lamblia and the nucleotide and deduced protein sequence of alpha giardin. Peattie, D.A., Alonso, R.A., Hein, A., Caulfield, J.P. J. Cell Biol. (1989) [Pubmed]
  25. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. Pasquale, S.M., Goodenough, U.W. J. Cell Biol. (1987) [Pubmed]
  26. Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Bastin, P., MacRae, T.H., Francis, S.B., Matthews, K.R., Gull, K. Mol. Cell. Biol. (1999) [Pubmed]
  27. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Shingyoji, C., Murakami, A., Takahashi, K. Nature (1977) [Pubmed]
  28. Lithium reversibly inhibits microtubule-based motility in sperm flagella. Gibbons, B.H., Gibbons, I.R. Nature (1984) [Pubmed]
  29. Differential inhibition by erythro-9-[3-(2-hydroxynonyl)]adenine of flagella-like and cilia-like movement of Leishmania promastigotes. Alexander, J., Burns, R.G. Nature (1983) [Pubmed]
  30. Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Hyams, J.S., Borisy, G.G. Science (1975) [Pubmed]
  31. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. Jurczyk, A., Gromley, A., Redick, S., San Agustin, J., Witman, G., Pazour, G.J., Peters, D.J., Doxsey, S. J. Cell Biol. (2004) [Pubmed]
  32. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Mykytyn, K., Mullins, R.F., Andrews, M., Chiang, A.P., Swiderski, R.E., Yang, B., Braun, T., Casavant, T., Stone, E.M., Sheffield, V.C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  33. RotundRacGAP functions with Ras during spermatogenesis and retinal differentiation in Drosophila melanogaster. Bergeret, E., Pignot-Paintrand, I., Guichard, A., Raymond, K., Fauvarque, M.O., Cazemajor, M., Griffin-Shea, R. Mol. Cell. Biol. (2001) [Pubmed]
  34. Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Sarpal, R., Todi, S.V., Sivan-Loukianova, E., Shirolikar, S., Subramanian, N., Raff, E.C., Erickson, J.W., Ray, K., Eberl, D.F. Curr. Biol. (2003) [Pubmed]
  35. IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. Baker, S.A., Freeman, K., Luby-Phelps, K., Pazour, G.J., Besharse, J.C. J. Biol. Chem. (2003) [Pubmed]
  36. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). Pazour, G.J., Wilkerson, C.G., Witman, G.B. J. Cell Biol. (1998) [Pubmed]
  37. Generation of flagella by cultured mouse spermatids. Gerton, G.L., Millette, C.F. J. Cell Biol. (1984) [Pubmed]
  38. Surface organization and composition of Euglena. II. Flagellar mastigonemes. Bouck, G.B., Rogalski, A., Valaitis, A. J. Cell Biol. (1978) [Pubmed]
  39. Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. Yang, P., Sale, W.S. J. Biol. Chem. (2000) [Pubmed]
  40. Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells. Lin, R.Y., Moss, S.B., Rubin, C.S. J. Biol. Chem. (1995) [Pubmed]
 
WikiGenes - Universities