The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functional Modulation of Nuclear Steroid Receptors by Tauroursodeoxycholic Acid Reduces Amyloid {beta}-Peptide-Induced Apoptosis.

Tauroursodeoxycholic acid (TUDCA) prevents amyloid beta-peptide (Abeta)-induced neuronal apoptosis, by modulating both classical mitochondrial pathways and specific upstream targets. In addition, activation of nuclear steroid receptors (NSRs), such as the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) differentially regulates apoptosis in the brain. In this study we investigated whether TUDCA, a cholesterol-derived endogenous molecule, requires NSRs for inhibiting Abeta-induced apoptosis in primary neurons. Our results confirmed that TUDCA significantly reduced Abeta-induced apoptosis; in addition, the fluorescently labeled bile acid molecule was detected diffusely in both cytoplasm and nucleus of rat cortical neurons. Interestingly, experiments using small interfering RNAs (siRNAs) revealed that, in contrast to GR siRNA, MR siRNA abolished the antiapoptotic effect of TUDCA. Abeta incubation reduced MR nuclear translocation while increasing nuclear GR levels. Notably, pretreatment with TUDCA markedly altered Abeta-induced changes in NSRs, including MR dissociation from its cytosolic chaperone, heat shock protein 90, and subsequent translocation to the nucleus. Furthermore, when a carboxy terminus-deleted form of MR was used, nuclear trafficking of both MR and the bile acid was abrogated, suggesting that they translocate to the nucleus as a steroid-receptor complex. Transfection experiments with wild-type or mutant MR confirmed that this interaction was required for TUDCA protection against Abeta-induced apoptosis. Finally, in cotransfection experiments with NSR response element reporter and overexpression constructs, pretreatment with TUDCA significantly modulated Abeta- induced changes in MR and GR transactivation. In conclusion, these results provide novel insights into the specific cellular mechanism of TUDCA antiapoptotic function against Abeta-induced apoptosis and suggest targets for potential therapeutic intervention.[1]


  1. Functional Modulation of Nuclear Steroid Receptors by Tauroursodeoxycholic Acid Reduces Amyloid {beta}-Peptide-Induced Apoptosis. Sol??, S., Amaral, J.D., Borralho, P.M., Ramalho, R.M., Castro, R.E., Aranha, M.M., Steer, C.J., Rodrigues, C.M. Mol. Endocrinol. (2006) [Pubmed]
WikiGenes - Universities