The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

15-Deoxy-delta12,14-prostaglandin J2 regulates leukemia inhibitory factor signaling through JAK-STAT pathway in mouse embryonic stem cells.

Embryonic stem (ES) cells are genetically normal, pluripotent cells, capable of self-renewal and differentiation into all cell lineages. While leukemia inhibitory factor ( LIF) maintains pluripotency in mouse ES cells, retinoic acid and other nuclear hormones induce neuro-glial differentiation in mouse and human ES cells in culture. Peroxisome-proliferator-activated receptors (PPARs) are ligand-dependent nuclear receptor transcription factors that regulate cell growth and differentiation in many cell types. However, the role of PPARs in the regulation of ES cell growth and differentiation is not known. In this study, we show that LIF induces proliferation and self-renewal of mouse D3-ES cells in culture. However, treatment with 15-Deoxy-Delta(12,14)-Prostaglandin J(2) (15d-PGJ2), a natural ligand for PPARgamma, or all-trans retinoic acid (ATRA) results in a dose-dependent decrease in proliferation and self-renewal in D3-ES cells. Immunoprecipitation and Western blot analyses showed that LIF induces tyrosine phosphorylation of JAK1, TYK2 and STAT3 in 30 min and treatment with 15d-PGJ2 or ATRA results in a dose-dependent decrease in LIF- induced phosphorylation of JAK1 and STAT3 in D3-ES cells. However, treatment of D3-ES cells with Ciglitazone or 15d-PGJ2 for 48 h in culture resulted in a dose-dependent increase in PPARgamma protein expression. These results suggest that PPARgamma agonists regulate LIF signaling through JAK-STAT pathway leading to growth and self-renewal of ES cells.[1]

References

 
WikiGenes - Universities