The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction.

Flagellin glycosylation is a necessary modification allowing flagellar assembly, bacterial motility, colonization, and hence virulence for the gastrointestinal pathogen Helicobacter pylori [Josenhans, C., Vossebein, L., Friedrich, S., and Suerbaum, S. (2002) FEMS Microbiol. Lett., 210, 165-172; Schirm, M., Schoenhofen, I.C., Logan, S.M., Waldron, K.C., and Thibault, P. (2005) Anal. Chem., 77, 7774-7782]. A causative agent of gastric and duodenal ulcers, H. pylori, heavily modifies its flagellin with the sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-alpha-l-manno-nonulosonic acid (pseudaminic acid). Because this sugar is unique to bacteria, its biosynthetic pathway offers potential as a novel therapeutic target. We have identified six H. pylori enzymes, which reconstitute the complete biosynthesis of pseudaminic acid, and its nucleotide-activated form CMP-pseudaminic acid, from UDP-N-acetylglucosamine (UDP-GlcNAc). The pathway intermediates and final product were identified from monitoring sequential reactions with nuclear magnetic resonance (NMR) spectroscopy, thereby confirming the function of each biosynthetic enzyme. Remarkably, the conversion of UDP-GlcNAc to CMP-pseudaminic acid was achieved in a single reaction combining six enzymes. This represents the first complete in vitro enzymatic synthesis of a sialic acid-like sugar and sets the groundwork for future small molecule inhibitor screening and design. Moreover, this study provides a strategy for efficient large-scale synthesis of novel medically relevant bacterial sugars that has not been attainable by chemical methods alone.[1]


WikiGenes - Universities