The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regional and cellular distribution of the extracellular matrix protein tenascin-C in the chick forebrain and its role in neonatal learning.

The juvenile brain's pronounced synaptic plasticity in response to early experience and learning events is related to the fact that the genetically pre-programmed molecular machinery mediating neuronal development and synapse formation, is activated throughout postnatal brain development and thereby can be recruited for learning and long-term memory formation. In situ hybridization and immunocytochemistry experiments revealed that tenascin-C, one candidate molecule which we suspect to be involved in neonatal learning, is expressed in the forebrain of domestic chicks around the sensitive period during which auditory filial imprinting takes place. The involvement of tenascin-C in this juvenile learning task was tested by injections of monoclonal antibodies directed to distinct domains of the tenascin-C molecule into the avian prefrontal cortex analog, the medio-rostral nidopallium/mesopallium (formerly termed medio-rostral neostriatum/hyperstriatum ventrale), a forebrain area which has been shown to be critically involved in auditory filial imprinting. Injections of monoclonal antibody Tn 68, which is directed against a cell-binding domain of the tenascin-C molecule, strongly reduced the imprinting rate, as opposed to injections of the monoclonal antibody Tn 578, which binds to a domain involved in neurite outgrowth. Double labeling immunohistochemistry revealed that tenascin-C is associated with neurons which express the Ca(2+)-binding protein parvalbumin, and displays a staining pattern highly reminiscent of perineuronal nets of the extracellular matrix. These results indicate that a distinct domain of tenascin-C is functionally involved in the juvenile learning process of filial imprinting and further suggest a critical role of a specific neuronal subpopulation.[1]


  1. Regional and cellular distribution of the extracellular matrix protein tenascin-C in the chick forebrain and its role in neonatal learning. Metzger, M., Bartsch, S., Bartsch, U., Bock, J., Schachner, M., Braun, K. Neuroscience (2006) [Pubmed]
WikiGenes - Universities