The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4.
Our previous studies have revealed that the signaling protein BCL10 plays a major role in adaptive immunity by mediating NF-kappaB activation in the LPS/TLR4 pathway. In this study, we show that IRAK-1 acts as the essential upstream adaptor that recruits BCL10 to the TLR4 signaling complex and mediates signaling to NF-kappaB through the BCL10-MALT1-TRAF6- TAK1 cascade. Following dissociation from IRAK-1, BCL10 is translocated into the cytosol along with TRAF6 and TAK1, in a process bridged by a direct BCL10-Pellino2 interaction. RNA interference against MALT1 markedly reduced the level of NF-kappaB activation stimulated by lipopolysaccharide (LPS) in macrophages, which suggests that MALT1 plays a major role in the LPS/TLR4 pathway. MALT1 interacted with BCL10 and TRAF6 to facilitate TRAF6 self-ubiquitination in the cytosol, which was strictly dependent on the dissociation of BCL10 from IRAK-1. We show that BCL10 oligomerization is a prerequisite for BCL10 function in LPS signaling to NF-kappaB and that IRAK-1 dimerization is an important event in this process.[1]References
- The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4. Dong, W., Liu, Y., Peng, J., Chen, L., Zou, T., Xiao, H., Liu, Z., Li, W., Bu, Y., Qi, Y. J. Biol. Chem. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg