The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Estradiol regulation of astroglia and apolipoprotein E: An important role in neuronal regeneration.

The effects of ovarian hormone on neuronal growth and function are well known. However, equally important, but often neglected, are ovarian hormone effects on glia. Our in vivo and in vitro studies show that estradiol modifies both neuronal growth and glial activity and these effects are tightly linked. Estradiol stimulates neurite growth and the release of the glial apolipoprotein E (apoE) in culture studies. Estradiol-stimulated neurite growth in these cultures requires apoE. Estradiol replacement in ovariectomized mice transiently increases the expression of apoE, the low density lipoprotein receptor related protein (LRP) and synaptophysin throughout the brain. Continuous estradiol replacement over two months loses effect on apoE, LRP, and synaptophysin and suppresses reactive gliosis. Estrous cycle variation of glial activation ( GFAP) and apoE are not identical. We propose that estradiol (and other ovarian hormones) functions as a zeitgeber to co-ordinate neuronal-glial interactions. Co-ordination assures temporally appropriate excitatory and inhibitory interactions between glia and neurons. With aging and the loss of ovarian cyclicity, some of this co-ordination must be diminished. These observations present significant clinical implications. Approaches to hormone therapy (HT), for diminishing the risk of chronic neurological diseases, need to consider the temporal nature of ovarian hormones in brain repair and plasticity. Moreover, approaches must consider apoE genotype. The neuroprotective effects of HT in numerous chronic age-related diseases may represent effective co-ordination of repair processes rather than direct disease-specific actions. Moreover, the role of glial-derived proteins in neuroprotection should not be ignored.[1]

References

  1. Estradiol regulation of astroglia and apolipoprotein E: An important role in neuronal regeneration. Struble, R.G., Nathan, B.P., Cady, C., Cheng, X., McAsey, M. Exp. Gerontol. (2007) [Pubmed]
 
WikiGenes - Universities