The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 Du,  Meng,  

Sulfur dioxide derivatives modulation of high-threshold calcium currents in rat dorsal root ganglion neurons.

This study addressed the effect of sulfur dioxide (SO(2)) derivatives on high-voltage-activated calcium currents (HVA-I(Ca)) in somatic membrane of freshly isolated rat dorsal root ganglion (DRG) neurons by using the whole-cell configuration of patch-clamp technique. High-threshold Ca(2+) channels are highly expressed in small dorsal root ganglion neurons. SO(2) derivatives increased the amplitudes of calcium currents in a concentration-dependent and voltage-dependent manner. The 50% enhancement concentrations (EC(50)) of SO(2) derivatives on HVA-I(Ca) was about 0.4 microM. In addition, SO(2) derivatives significantly shifted the activation and inactivation curve in the depolarizing direction. Parameters for the fit of a Boltzmann equation to mean values for the activation were V(1/2)=-17.9+/-1.3 mV before and -12.5+/-1.1 mV after application 0.5 microM SO(2) derivatives 2 min (P<0.05). The half inactivation of HVA-I(Ca) was shifted 9.7 mV to positive direction (P<0.05). Furthermore, SO(2) derivatives significantly prolonged the slow constant of inactivation, slowed the fast recovery but markedly accelerated the slow recovery of HVA-I(Ca) from inactivation. From HP of -60 mV 0.5 microM SO(2) derivatives increased the amplitude of HVA-I(Ca) with a depolarizing voltage step to -10 mV about 54.0% in small DRG neurons but 33.3% in large DRG neurons. These results indicated a possible correlation between the change of calcium channels and SO(2) inhalation toxicity, which might cause periphery neurons abnormal regulation of nociceptive transmission via calcium channels.[1]


WikiGenes - Universities