The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endogenous alpha(2)-adrenergic receptor-mediated neuroprotection after severe hypoxia in preterm fetal sheep.

Central alpha-adrenergic receptor activity is important for fetal adaptation to hypoxia before birth. It is unclear whether it is also important during recovery. We therefore tested the hypothesis that an infusion of the specific alpha(2)-adrenergic receptor antagonist idazoxan (1 mg/kg/h i.v.) from 15 min to 4 h after profound hypoxia induced by 25 min umbilical cord occlusion in fetal sheep at 70% of gestation (equivalent to the 28-32 weeks in humans) would increase neural injury. After 3 days' recovery, idazoxan infusion was associated with a significant increase in neuronal loss in the hippocampus (P<0.05), expression of cleaved caspase-3 (P<0.05), and numbers of activated microglia (P<0.05). There was no significant effect on other neuronal regions or on loss of O4-positive premyelinating oligodendrocytes in the subcortical white matter. Idazoxan was associated with an increase in evolving epileptiform electroencephalographic (EEG) transient activity after occlusion (difference at peak 2.5+/-1.0 vs. 11.7+/-4.7 counts/min, P<0.05) and significantly reduced average spectral edge frequency, but not EEG intensity, from 54 until 72 h after occlusion (P<0.05). Hippocampal neuronal loss was correlated with total numbers of epileptiform transients during idazoxan infusion (P<0.01; r(2)=0.7). In conclusion, endogenous inhibitory alpha(2)-adrenergic receptor activation after severe hypoxia appears to significantly limit evolving hippocampal damage in the immature brain.[1]

References

  1. Endogenous alpha(2)-adrenergic receptor-mediated neuroprotection after severe hypoxia in preterm fetal sheep. Dean, J.M., Gunn, A.J., Wassink, G., George, S., Bennet, L. Neuroscience (2006) [Pubmed]
 
WikiGenes - Universities