The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

NMR-based Model Reveals the Structural Determinants of Mammalian Arylamine N-Acetyltransferase Substrate Specificity.

Arylamine N-acetyltransferases (NATs) catalyze the acetylation of arylamines, a key step in the detoxification of many carcinogens. The determinants of NAT substrate specificity are not known, yet this knowledge is required to understand why NAT enzymes acetylate some arylamines, but not others. Here, we use NMR spectroscopy and homology modeling to reveal the structural determinants of arylamine acetylation by NATs. In particular, by using chemical shift perturbation analysis, we have identified residues that play a critical role in substrate binding and catalysis. This study reveals why human NAT1 acetylates the sunscreen additive p-aminobenzoic acid and tobacco smoke carcinogen 4-aminobiphenyl, but not o-toluidine and other arylamines linked to bladder cancer. Our results represent an important step toward predicting whether arylamines present in new products can be detoxified by mammalian NATs.[1]

References

  1. NMR-based Model Reveals the Structural Determinants of Mammalian Arylamine N-Acetyltransferase Substrate Specificity. Zhang, N., Liu, L., Liu, F., Wagner, C.R., Hanna, P.E., Walters, K.J. J. Mol. Biol. (2006) [Pubmed]
 
WikiGenes - Universities