The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

NAT1  -  N-acetyltransferase 1 (arylamine N...

Homo sapiens

Synonyms: AAC1, Arylamide acetylase 1, Arylamine N-acetyltransferase 1, MNAT, Monomorphic arylamine N-acetyltransferase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NAT1

  • Given that the activity of NAT1 depends on a reactive cysteine that can be a target for oxidants, we studied whether peroxynitrite, a highly reactive nitrogen species involved in human carcinogenesis, could inhibit the activity of endogenous NAT1 in MCF7 breast cancer cells [1].
  • While evidence from this study cannot be conclusive, our data suggest that NAT1 and NAT2 variants may explain an approximately twofold increase in polyp number in the FAP colon [2].
  • 3-NBA showed a 3.8-fold and 16.8-fold higher mutagenic activity in Salmonella strains expressing human NAT1 and human NAT2, respectively, than in the acetyltransferase-deficient strain, whereas N-Ac-N-OH-ABA was only clearly (but weakly) mutagenic in Salmonella DJ460 expressing human NAT2 [3].
  • Variants of N-acetyltransferase NAT1 and a case-control study of colorectal adenomas [4].
  • Association of GSTT1 non-null and NAT1 slow/rapid genotypes with von Hippel-Lindau tumour suppressor gene transversions in sporadic renal cell carcinoma [5].

Psychiatry related information on NAT1

  • NAT gene polymorphisms and susceptibility to Alzheimer's disease: identification of a novel NAT1 allelic variant [6].
  • NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds [7].

High impact information on NAT1


Chemical compound and disease context of NAT1


Biological context of NAT1


Anatomical context of NAT1


Associations of NAT1 with chemical compounds


Enzymatic interactions of NAT1


Regulatory relationships of NAT1

  • The expression of these enzymes is tissue-specific such that NAT1 is ubiquitously expressed and NAT2 is confined mainly to liver and colorectal tissues [24].

Other interactions of NAT1

  • As the next step, the A2R-5 as well as CR-68 cells were further transfected with human monomorphic NAT (NAT1) or polymorphic NAT (NAT2) cDNAs [25].
  • From these results, it is proposed that both CYP1A2 and NAT2 (but not NAT1) are required for mutagenic activation of these compounds, implying that acetylator polymorphism may be an important risk factor in the carcinogenicity of these compounds [25].
  • CONCLUSION: The severity of colonic FAP may be modified by alleles at the NAT1 and/or NAT2 loci [2].
  • Beginning in January 1992, all case patients and their matched control subjects were asked for a blood sample donation at the end of the in-person interviews for measurements of 3- and 4-aminobiphenyl (ABP) hemoglobin adducts, and glutathione S-transferases M1/T1/P1 (GSTM1/T1/P1) and N-acetyltransferase-1 (NAT1) genotypes [26].
  • Neither NAT1 slow genotype, or GSTT1 null genotype, alone or in combination with smoking, affected breast cancer risk [27].

Analytical, diagnostic and therapeutic context of NAT1


  1. Peroxynitrite irreversibly inactivates the human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) in human breast cancer cells: a cellular and mechanistic study. Dairou, J., Atmane, N., Rodrigues-Lima, F., Dupret, J.M. J. Biol. Chem. (2004) [Pubmed]
  2. Analysis of candidate modifier loci for the severity of colonic familial adenomatous polyposis, with evidence for the importance of the N-acetyl transferases. Crabtree, M.D., Fletcher, C., Churchman, M., Hodgson, S.V., Neale, K., Phillips, R.K., Tomlinson, I.P. Gut (2004) [Pubmed]
  3. Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Arlt, V.M., Glatt, H., Muckel, E., Pabel, U., Sorg, B.L., Schmeiser, H.H., Phillips, D.H. Carcinogenesis (2002) [Pubmed]
  4. Variants of N-acetyltransferase NAT1 and a case-control study of colorectal adenomas. Lin, H.J., Probst-Hensch, N.M., Hughes, N.C., Sakamoto, G.T., Louie, A.D., Kau, I.H., Lin, B.K., Lee, D.B., Lin, J., Frankl, H.D., Lee, E.R., Hardy, S., Grant, D.M., Haile, R.W. Pharmacogenetics (1998) [Pubmed]
  5. Association of GSTT1 non-null and NAT1 slow/rapid genotypes with von Hippel-Lindau tumour suppressor gene transversions in sporadic renal cell carcinoma. Gallou, C., Longuemaux, S., Deloménie, C., Méjean, A., Martin, N., Martinet, S., Palais, G., Bouvier, R., Droz, D., Krishnamoorthy, R., Junien, C., Béroud, C., Dupret, J.M. Pharmacogenetics (2001) [Pubmed]
  6. NAT gene polymorphisms and susceptibility to Alzheimer's disease: identification of a novel NAT1 allelic variant. Johnson, N., Bell, P., Jonovska, V., Budge, M., Sim, E. BMC Med. Genet. (2004) [Pubmed]
  7. Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Windmill, K.F., Gaedigk, A., Hall, P.M., Samaratunga, H., Grant, D.M., McManus, M.E. Toxicol. Sci. (2000) [Pubmed]
  8. Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. Bhakta, S., Besra, G.S., Upton, A.M., Parish, T., Sholto-Douglas-Vernon, C., Gibson, K.J., Knutton, S., Gordon, S., DaSilva, R.P., Anderton, M.C., Sim, E. J. Exp. Med. (2004) [Pubmed]
  9. Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver. Grant, D.M., Mörike, K., Eichelbaum, M., Meyer, U.A. J. Clin. Invest. (1990) [Pubmed]
  10. Genetic polymorphisms in carcinogen metabolism and their association to hereditary nonpolyposis colon cancer. Moisio, A.L., Sistonen, P., Mecklin, J.P., Järvinen, H., Peltomäki, P. Gastroenterology (1998) [Pubmed]
  11. The first 3D structure of arylamine N-acetyltransferase reveals a protease-like catalytic triad. Payton, M. Trends Pharmacol. Sci. (2000) [Pubmed]
  12. Inhibitory effects of polyphenolic compounds on human arylamine N-acetyltransferase 1 and 2. Kukongviriyapan, V., Phromsopha, N., Tassaneeyakul, W., Kukongviriyapan, U., Sripa, B., Hahnvajanawong, V., Bhudhisawasdi, V. Xenobiotica (2006) [Pubmed]
  13. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Smelt, V.A., Upton, A., Adjaye, J., Payton, M.A., Boukouvala, S., Johnson, N., Mardon, H.J., Sim, E. Hum. Mol. Genet. (2000) [Pubmed]
  14. Arylamine N-acetyltransferase type 2 and glutathione S-transferases M1 and T1 polymorphisms in familial adenomatous polyposis. Lamberti, C., Jungck, M., Laarmann, M., Knapp, M., Caspari, R., Friedl, W., Sauerbruch, T., Propping, P., Kruse, R. Pharmacogenetics (2002) [Pubmed]
  15. Association of arylamine N-acetyltransferases NAT1 and NAT2 genotypes to laryngeal cancer risk. Henning, S., Cascorbi, I., Münchow, B., Jahnke, V., Roots, I. Pharmacogenetics (1999) [Pubmed]
  16. Inactivation of human arylamine N-acetyltransferase 1 by the hydroxylamine of p-aminobenzoic acid. Butcher, N.J., Ilett, K.F., Minchin, R.F. Biochem. Pharmacol. (2000) [Pubmed]
  17. Induction of human arylamine N-acetyltransferase type I by androgens in human prostate cancer cells. Butcher, N.J., Tetlow, N.L., Cheung, C., Broadhurst, G.M., Minchin, R.F. Cancer Res. (2007) [Pubmed]
  18. N-Acetyltransferases, sulfotransferases and heterocyclic amine activation in the breast. Williams, J.A., Stone, E.M., Fakis, G., Johnson, N., Cordell, J.A., Meinl, W., Glatt, H., Sim, E., Phillips, D.H. Pharmacogenetics (2001) [Pubmed]
  19. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. McCarver, D.G., Hines, R.N. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
  20. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Windmill, K.F., McKinnon, R.A., Zhu, X., Gaedigk, A., Grant, D.M., McManus, M.E. Mutat. Res. (1997) [Pubmed]
  21. Expression of cytochromes P450 and glutathione S-transferases in human prostate, and the potential for activation of heterocyclic amine carcinogens via acetyl-coA-, PAPS- and ATP-dependent pathways. Di Paolo, O.A., Teitel, C.H., Nowell, S., Coles, B.F., Kadlubar, F.F. Int. J. Cancer (2005) [Pubmed]
  22. Regulation of the activity of the human drug metabolizing enzyme arylamine N-acetyltransferase 1: role of genetic and non genetic factors. Rodrigues-Lima, F., Dupret, J.M. Curr. Pharm. Des. (2004) [Pubmed]
  23. Construction of Syrian hamster lines congenic at the polymorphic acetyltransferase locus (NAT2): acetylator genotype-dependent N- and O-acetylation of arylamine carcinogens. Hein, D.W., Doll, M.A., Rustan, T.D., Gray, K., Ferguson, R.J., Feng, Y. Toxicol. Appl. Pharmacol. (1994) [Pubmed]
  24. Xenobiotic inducible regions of the human arylamine N-acetyltransferase 1 and 2 genes. Mitchell, K.R., Warshawsky, D. Toxicol. Lett. (2003) [Pubmed]
  25. Stable expression of human CYP1A2 and N-acetyltransferases in Chinese hamster CHL cells: mutagenic activation of 2-amino-3-methylimidazo[4,5-f]quinoline and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Yanagawa, Y., Sawada, M., Deguchi, T., Gonzalez, F.J., Kamataki, T. Cancer Res. (1994) [Pubmed]
  26. Carotenoids/vitamin C and smoking-related bladder cancer. Castelao, J.E., Yuan, J.M., Gago-Dominguez, M., Skipper, P.L., Tannenbaum, S.R., Chan, K.K., Watson, M.A., Bell, D.A., Coetzee, G.A., Ross, R.K., Yu, M.C. Int. J. Cancer (2004) [Pubmed]
  27. NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women. van der Hel, O.L., Peeters, P.H., Hein, D.W., Doll, M.A., Grobbee, D.E., Kromhout, D., Bueno de Mesquita, H.B. Pharmacogenetics (2003) [Pubmed]
  28. Arylamine N-acetyltransferase type 2 (NAT2), chromosome 8 aneuploidy, and identification of a novel NAT1 cosmid clone: an investigation in bladder cancer by interphase FISH. Stacey, M., Matas, N., Drake, M., Payton, M., Fakis, G., Greenland, J., Sim, E. Genes Chromosomes Cancer (1999) [Pubmed]
  29. The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures. Al-Buheissi, S.Z., Cole, K.J., Hewer, A., Kumar, V., Bryan, R.L., Hudson, D.L., Patel, H.R., Nathan, S., Miller, R.A., Phillips, D.H. Prostate (2006) [Pubmed]
  30. Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: the influence of smoking. Okkels, H., Sigsgaard, T., Wolf, H., Autrup, H. Cancer Epidemiol. Biomarkers Prev. (1997) [Pubmed]
WikiGenes - Universities