The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells.

Tight junctions are crucial for maintaining the polarity and vectorial transport functions of epithelial cells. We and others have shown that Na-K-ATPase plays a key role in the organization and permeability of tight junctions in mammalian cells and analogous septate junctions in Drosophila. However, the mechanism by which Na-K-ATPase modulates tight junctions is not known. In this study, using a well-differentiated human pancreatic epithelial cell line HPAF-II, we demonstrate that Na-K-ATPase is present at the apical junctions and forms a complex with protein phosphatase-2A, a protein known to be present at tight junctions. Inhibition of Na-K-ATPase ion transport function reduced protein phosphatase-2A activity, hyperphosphorylated occludin, induced rearrangement of tight junction strands, and increased permeability of tight junctions to ionic and nonionic solutes. These data suggest that Na-K-ATPase is required for controlling the tight junction gate function.[1]

References

  1. Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells. Rajasekaran, S.A., Barwe, S.P., Gopal, J., Ryazantsev, S., Schneeberger, E.E., Rajasekaran, A.K. Am. J. Physiol. Gastrointest. Liver Physiol. (2007) [Pubmed]
 
WikiGenes - Universities