Direct stimulatory effects of the TLR2/6 ligand bacterial lipopeptide MALP-2 on neutrophil granulocytes.
Bacterial lipopeptides represent a group of bacterial compounds able to trigger the functions of cells of the innate immune response. Whereas diacylated lipopeptides are recognized by TLR2/6 dimers, triacylated lipopeptides were shown to act via TLR2/1 dimers. Although several previous studies dealt with the effect of the TLR2/1 ligand Pam(3)CysSK(4) on neutrophil granulocytes (PMN), it is still not clear whether TLR2/6 ligand lipopeptides can directly influence PMN functions. In the present study we used highly purified human neutrophils to investigate the direct effects of the diacylated mycoplasmal macrophage activating lipopeptide-2 (MALP-2) on the function of neutrophil granulocytes. After exposure to 10 ng/ml MALP-2 neutrophils acquired activated cell shape, secreted IL-8 and MIP-1beta and their phagocytic capacity was enhanced. Analysis of cell surface activation markers confirmed the activating effect of MALP-2, the expression of CD62L was downregulated whereas CD11b was upregulated on PMN after exposure to MALP-2. The constitutive apoptosis of PMN was inhibited after exposure to MALP-2. However, MALP-2 exerted only a short-term effect on the apoptosis of resting neutrophils, a longer lasting effect was observed after transendothelial migration. MALP-2 did not directly induce the production of reactive oxygen intermediates but primed PMN for a fMLP-induced oxidative burst. The migration of neutrophils was enhanced after treatment with MALP-2. This was due, however, to a chemokinetic rather than to a chemotactic effect. Pam(3)CysSK(4) also activated PMN, but in comparison to MALP-2, at higher concentrations. These findings suggest that diacylated lipopeptides are important microbial structures recognized by and acting on neutrophil granulocytes.[1]References
- Direct stimulatory effects of the TLR2/6 ligand bacterial lipopeptide MALP-2 on neutrophil granulocytes. Wilde, I., Lotz, S., Engelmann, D., Starke, A., van Zandbergen, G., Solbach, W., Laskay, T. Med. Microbiol. Immunol. (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg