The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer.

Overexpression of RhoA in cancer indicates a poor prognosis, because of increased tumor cell proliferation and invasion and tumor angiogenesis. We showed previously that anti-RhoA small interfering RNA (siRNA) inhibited aggressive breast cancer more effectively than conventional blockers of Rho-mediated signaling pathways. This study reports the efficacy and lack of toxicity of intravenously administered encapsulated anti-RhoA siRNA in chitosan-coated polyisohexylcyanoacrylate (PIHCA) nanoparticles in xenografted aggressive breast cancers (MDA-MB-231). The siRNA was administered every 3 days at a dose of 150 or 1500 microg/kg body weight in nude mice. This treatment inhibited the growth of tumors by 90% in the 150-microg group and by even more in the 1500-microg group. Necrotic areas were observed in tumors from animals treated with anti-RhoA siRNA at 1500 microg/kg, resulting from angiogenesis inhibition. In addition, this therapy was found to be devoid of toxic effects, as evidenced by similarities between control and treated animals for the following parameters: body weight gain; biochemical markers of hepatic, renal, and pancreatic function; and macroscopic appearance of organs after 30 days of treatment. Because of its efficacy and the absence of toxicity, it is suggested that this strategy of anti-RhoA siRNA holds significant promise for the treatment of aggressive cancers.[1]

References

  1. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Pill??, J.Y., Li, H., Blot, E., Bertrand, J.R., Pritchard, L.L., Opolon, P., Maksimenko, A., Lu, H., Vannier, J.P., Soria, J., Malvy, C., Soria, C. Hum. Gene Ther. (2006) [Pubmed]
 
WikiGenes - Universities