The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification and Characterization of abeta1,3-Glucosyltransferase That Synthesizes the Glc-beta1,3-Fuc Disaccharide on Thrombospondin Type 1 Repeats.

Thrombospondin type 1 repeats (TSRs) are biologically important domains of extracellular proteins. They are modified with a unique Glcbeta1,3Fucalpha1-O-linked disaccharide on either serine or threonine residues. Here we identify the putative glycosyltransferase, B3GTL, as the beta1,3-glucosyltransferase involved in the biosynthesis of this disaccharide. This enzyme is conserved from Caenorhabditis elegans to man and shares 28% sequence identity with Fringe, the beta1,3-N-acetylglucosaminyltransferase that modifies O-linked fucosyl residues in proteins containing epidermal growth factor-like domains, such as Notch. beta1,3-Glucosyltransferase glucosylates properly folded TSR-fucose but not fucosylated epidermal growth factor-like domain or the non-fucosylated modules. Specifically, the glucose is added in a beta1,3-linkage to the fucose in TSR. The activity profiles of beta1,3-glucosyltransferase and protein O-fucosyltransferase 2, the enzyme that carries out the first step in TSR O-fucosylation, superimpose in endoplasmic reticulum subfractions obtained by density gradient centrifugation. Both enzymes are soluble proteins that efficiently modify properly folded TSR modules. The identification of the beta1,3-glucosyltransferase gene allows us to manipulate the formation of the rare Glcbeta1,3Fucalpha1 structure to investigate its biological function.[1]

References

  1. Identification and Characterization of abeta1,3-Glucosyltransferase That Synthesizes the Glc-beta1,3-Fuc Disaccharide on Thrombospondin Type 1 Repeats. Kozma, K., Keusch, J.J., Hegemann, B., Luther, K.B., Klein, D., Hess, D., Haltiwanger, R.S., Hofsteenge, J. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities