The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins.

In mammals, glucose transport is mediated by five structurally related glucose transporters that show a characteristic cell-specific expression. However, the rat brain/HepG2/erythrocyte-type glucose transporter GLUT-1 is expressed at low levels in most cells. The reason for this coexpression is not clear. GLUT-1 is negatively regulated by glucose. Another family of proteins, glucose-regulated proteins (GRPs), is also ubiquitously expressed and stimulated by glucose deprivation and other cellular stresses. We therefore hypothesized that GLUT-1 may be a glucose-regulated stress protein. This was tested by subjecting L8 myocytes and NIH 3T3 fibroblasts to glucose starvation or exposure to the calcium ionophore A23187, 2-mercaptoethanol, or tunicamycin, all known to increase GRP levels. The mRNA for GLUT-1 was augmented by 50-300% in a time-dependent manner, similarly to the changes in GRP-78 mRNA. Ex vivo incubation of rat soleus muscles induced a marked and concomitant rise in the mRNA levels of GLUT-1 and GRP-78. Finally, calcium ionophore A23187 and 2-mercaptoethanol induced a 2- to 3-fold increase in the levels of the GLUT-1 protein and hexose uptake. In all instances in which GRP-78 and GLUT-1 responded to stress, the transcription of the cell-specific muscle/adipocyte-type insulin-responsive glucose transporter (GLUT-4) did not change. Thus, despite the lack of structural similarity, GLUT-1 and GRP-78 expression is regulated similarly, whereas the regulation of GLUT-4, which is structurally related to GLUT-1, is different. We propose that GLUT-1 belongs to the GRP family of stress proteins and that its ubiquitous expression may serve a specific purpose during cellular stress.[1]

References

  1. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Wertheimer, E., Sasson, S., Cerasi, E., Ben-Neriah, Y. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
 
WikiGenes - Universities