The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of protein kinase B/Akt in the periphery contributes to pain behavior induced by capsaicin in rats.

Protein kinase B ( PKB/Akt) is a member of the second-messenger regulated subfamily of protein kinases. It is implicated in signaling downstream of growth factors, insulin receptor tyrosine kinases and phosphoinositide 3-kinase ( PI3K). Current studies indicate that nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and PI3K help mediate inflammatory hyperalgesia. However, little is known about the role of PKB/Akt in the nociceptive system. In this study, we investigated whether PKB/Akt in primary sensory neurons is activated after noxious stimulation and contributes to pain behavior induced in rats by capsaicin. We demonstrated that phospho-PKB/Akt (p-PKB/Akt) is increased in dorsal root ganglia (DRG) at 5 min after intradermal injection of capsaicin. p-PKB/Akt is distributed predominantly in small- and medium-sized DRG cells. After capsaicin injection, p-PKB/Akt (473) is colocalized with isotectin-B4 (IB4), tyrosine kinase A (TrkA), and calcitonin gene-related peptide (CGRP). Furthermore, most transient receptor potential vanilloid type 1 (TRPV1) positive DRG neurons double label for p-PKB/Akt. Behavioral experiments show that intradermal injection of a PI3K (upstream of PKB/Akt) inhibitor, wortmannin, dose-dependently inhibits the changes in exploratory behavior evoked by capsaicin injection. The PKB/Akt inhibitor, Akt inhibitor IV, has the same effect. The results suggest that the PKB/Akt signaling pathway in the periphery is activated by noxious stimulation and contributes to pain behavior.[1]


WikiGenes - Universities