The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Exploratory Behavior

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Exploratory Behavior

 

Psychiatry related information on Exploratory Behavior

 

High impact information on Exploratory Behavior

 

Chemical compound and disease context of Exploratory Behavior

  • Endogenous CCK may not be released during dopamine-induced hyperlocomotion or dark-induced hyperlocomotion, or endogenous CCK may not contribute significantly to exploratory behaviors mediated through the mesolimbic dopamine pathway [16].
  • Inhibition of norepinephrine (NE) release using the alpha 2-agonist clonidine (25 micrograms/kg, i.p.) or the noradrenergic-selective neurotoxin DSP-4 antagonized the restraint-induced decrease in exploratory behavior [17].
  • The alpha 1-receptor antagonist prazosin (200 micrograms/kg) also prevented the behavioral effect of restraint, whereas the alpha 1-agonist phenylephrine (50 or 100 ng, i.c.v.) decreased exploratory behavior [17].
  • We verified that exploratory behaviors were depressed in each model and that an antidepressant drug, tranylcypromine, prevented the depressed behavior in each model [18].
  • Adult offspring prenatally exposed to ethanol (FAE; 35% ethanol-derived calories), pair-fed (PF) or control (C) diets were tested in the Morris water maze (MWM), the forced swim test (FST), and the open field test (OFT) to assess spatial learning, depressive behavior, and exploratory behavior/anxiety, respectively [19].
 

Biological context of Exploratory Behavior

 

Anatomical context of Exploratory Behavior

 

Gene context of Exploratory Behavior

  • The dopamine D4 receptor, which is preferentially distributed in cortical and limbic regions of the brain, is currently of major interest because of the high degree of functionally relevant variability in its gene (DRD4), and the association of this gene with Novelty Seeking behavior [29].
  • The results indicate that Idua(-/-) mice present deficits in long-term memory for aversive training and reduced exploratory behavior [30].
  • In order to elucidate the involvement of CCKAR in the regulation of anxiety, we investigated the exploratory behavior on elevated plus-maze test, the black and white box test, and open field test with OLETF rats in comparison with normal [Long-Evans Tokushima Otsuka (LETO)] rats [31].
  • These data indicate that the Clock mutation leads to increased exploratory behavior and increased escape-seeking behavior, and, conversely, does not result in increased anxiety or depressive-like behavior [32].
  • Neuronal overexpression of heme oxygenase-1 correlates with an attenuated exploratory behavior and causes an increase in neuronal NADPH diaphorase staining [20].
 

Analytical, diagnostic and therapeutic context of Exploratory Behavior

References

  1. Intracerebral HIV-1 glycoprotein 120 produces sickness behavior and pituitary-adrenal activation in rats: role of prostaglandins. Barak, O., Weidenfeld, J., Goshen, I., Ben-Hur, T., Taylor, A.N., Yirmiya, R. Brain Behav. Immun. (2002) [Pubmed]
  2. Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia. Héron, A., Lekieffre, D., Le Peillet, E., Lasbennes, F., Seylaz, J., Plotkine, M., Boulu, R.G. Brain Res. (1994) [Pubmed]
  3. Increased hippocampal uptake of tumor necrosis factor alpha and behavioral changes in mice. Pan, W., Kastin, A.J., Rigai, T., McLay, R., Pick, C.G. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (2003) [Pubmed]
  4. Parkinson's disease, personality, and dopamine. Menza, M.A., Forman, N.E., Goldstein, H.S., Golbe, L.I. The Journal of neuropsychiatry and clinical neurosciences. (1990) [Pubmed]
  5. Interactions of angiotensin II with piracetam in exploratory behavior and convulsive-seizure threshold. Georgiev, V., Petkova, B., Kambourova, T., Opitz, M. Acta physiologica et pharmacologica Bulgarica. (1989) [Pubmed]
  6. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Inoue, I., Yanai, K., Kitamura, D., Taniuchi, I., Kobayashi, T., Niimura, K., Watanabe, T., Watanabe, T. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  7. Association of dopamine D4 receptor (DRD4) exon III repeat polymorphism with temperament in 3-year-old infants. De Luca, A., Rizzardi, M., Buccino, A., Alessandroni, R., Salvioli, G.P., Filograsso, N., Novelli, G., Dallapiccola, B. Neurogenetics (2003) [Pubmed]
  8. Individual differences in novelty-seeking behavior but not in anxiety response to a new environment can predict nicotine consumption in adolescent C57BL/6 mice. Abreu-Villaça, Y., Queiroz-Gomes, F.d.o. .E., Dal Monte, A.P., Filgueiras, C.C., Manhães, A.C. Behav. Brain Res. (2006) [Pubmed]
  9. Masculine sexual behavior features in the Flinders sensitive and resistant line rats. Ferreira-Nuño, A., Overstreet, D.H., Morales-Otal, A., Velázquez-Moctezuma, J. Behav. Brain Res. (2002) [Pubmed]
  10. Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Thompson, B.L., Levitt, P., Stanwood, G.D. Behav. Brain Res. (2005) [Pubmed]
  11. Interaction between purine and benzodiazepine: Inosine reverses diazepam-induced stimulation of mouse exploratory behavior. Crawley, J.N., Marangos, P.J., Paul, S.M., Skolnick, P., Goodwin, F.K. Science (1981) [Pubmed]
  12. Behavioral correlates of activity in identified hypocretin/orexin neurons. Mileykovskiy, B.Y., Kiyashchenko, L.I., Siegel, J.M. Neuron (2005) [Pubmed]
  13. Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. Moechars, D., Lorent, K., De Strooper, B., Dewachter, I., Van Leuven, F. EMBO J. (1996) [Pubmed]
  14. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., Sakaue, M., Miyazaki, J., Niwa, H., Tashiro, F., Yamamoto, K., Koga, K., Tomimoto, S., Kunugi, A., Suetake, S., Baba, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  15. Altered gene expression in striatal projection neurons in CB1 cannabinoid receptor knockout mice. Steiner, H., Bonner, T.I., Zimmer, A.M., Kitai, S.T., Zimmer, A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Subtype-selective cholecystokinin receptor antagonists block cholecystokinin modulation of dopamine-mediated behaviors in the rat mesolimbic pathway. Crawley, J.N. J. Neurosci. (1992) [Pubmed]
  17. Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF. Berridge, C.W., Dunn, A.J. J. Neurosci. (1989) [Pubmed]
  18. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. Caldecott-Hazard, S., Mazziotta, J., Phelps, M. J. Neurosci. (1988) [Pubmed]
  19. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Wilcoxon, J.S., Kuo, A.G., Disterhoft, J.F., Redei, E.E. Mol. Psychiatry (2005) [Pubmed]
  20. Neuronal overexpression of heme oxygenase-1 correlates with an attenuated exploratory behavior and causes an increase in neuronal NADPH diaphorase staining. Maines, M.D., Polevoda, B., Coban, T., Johnson, K., Stoliar, S., Huang, T.J., Panahian, N., Cory-Slechta, D.A., McCoubrey, W.K. J. Neurochem. (1998) [Pubmed]
  21. Estrogens influence behavioral responses in a kainic acid model of neurotoxicity. Papalexi, E., Antoniou, K., Kitraki, E. Hormones and behavior. (2005) [Pubmed]
  22. Higher brain functions of PACAP and a homologous Drosophila memory gene amnesiac: insights from knockouts and mutants. Hashimoto, H., Shintani, N., Baba, A. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  23. Succinate causes oxidative damage through N-methyl-D-aspartate-mediated mechanisms. Sinhorin, V.D., Roehrs, C., Pasin, J.S., Bellé, N.A., Rubin, M.A., Mello, C.F. Brain Res. (2005) [Pubmed]
  24. Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression. Biagini, G., Pich, E.M., Carani, C., Marrama, P., Gustafsson, J.A., Fuxe, K., Agnati, L.F. Biol. Psychiatry (1993) [Pubmed]
  25. Cellular and behavioral effects of D2 dopamine receptor hydrophobic eigenmode-targeted peptide ligands. Mandell, A.J., Selz, K.A., Owens, M.J., Kinkead, B., Shlesinger, M.F., Gutman, D.A., Arguragi, V. Neuropsychopharmacology (2003) [Pubmed]
  26. Do nociceptive signals from the pancreas travel in the dorsal column? Houghton, A.K., Wang, C.C., Westlund, K.N. Pain (2001) [Pubmed]
  27. Effects of amygdaloid lesions, hippocampal lesions, and buspirone on black-white exploration and food carrying in rats. Dringenberg, H.C., Kornelsen, R.A., Pacelli, R., Petersen, K., Vanderwolf, C.H. Behav. Brain Res. (1998) [Pubmed]
  28. The role of histamine in the anterior hypothalamus and its functional interaction with the hippocampus on exploratory behavior in adult male rats. Alvarez, E.O., Banzan, A.M. Behav. Brain Res. (1992) [Pubmed]
  29. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. LaHoste, G.J., Swanson, J.M., Wigal, S.B., Glabe, C., Wigal, T., King, N., Kennedy, J.L. Mol. Psychiatry (1996) [Pubmed]
  30. Long-term memory for aversive training is impaired in Idua(-/-) mice, a genetic model of mucopolysaccharidosis type I. Reolon, G.K., Braga, L.M., Camassola, M., Luft, T., Henriques, J.A., Nardi, N.B., Roesler, R. Brain Res. (2006) [Pubmed]
  31. Increased anxiety behavior in OLETF rats without cholecystokinin-A receptor. Yamamoto, Y., Akiyoshi, J., Kiyota, A., Katsuragi, S., Tsutsumi, T., Isogawa, K., Nagayama, H. Brain Res. Bull. (2000) [Pubmed]
  32. The circadian Clock mutation increases exploratory activity and escape-seeking behavior. Easton, A., Arbuzova, J., Turek, F.W. Genes Brain Behav. (2003) [Pubmed]
  33. DSP-4-induced depletion of brain norepinephrine produces opposite effects on exploratory behavior 3 and 14 days after treatment. Berridge, C.W., Dunn, A.J. Psychopharmacology (Berl.) (1990) [Pubmed]
  34. Antagonism of non-NMDA receptors in the dorsal periaqueductal grey induces anxiolytic effect in the elevated plus maze. Matheus, M.G., Guimarães, F.S. Psychopharmacology (Berl.) (1997) [Pubmed]
  35. Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Valdez, G.R., Roberts, A.J., Chan, K., Davis, H., Brennan, M., Zorrilla, E.P., Koob, G.F. Alcohol. Clin. Exp. Res. (2002) [Pubmed]
  36. Interaction between neuropeptide Y and alpha-melanocyte stimulating hormone in amygdala regulates anxiety in rats. Kokare, D.M., Dandekar, M.P., Chopde, C.T., Subhedar, N. Brain Res. (2005) [Pubmed]
  37. A synthetic peptide ligand of NCAM affects exploratory behavior and memory in rodents. Hartz, B.P., Søhoel, A., Berezin, V., Bock, E., Scheel-Krüger, J. Pharmacol. Biochem. Behav. (2003) [Pubmed]
 
WikiGenes - Universities