The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Descending adrenergic input to the primate spinal cord and its possible role in modulation of spinothalamic cells.

The present study focuses on 3 different aspects of the descending adrenergic system in the primate: (1) the distribution of adrenergic fibers and terminals in the spinal cord, (2) the source of this input and (3) the possible physiological effects of this system on spinal nociceptive processing. Antibodies to the enzyme phenylethanolamine-N-methyltransferase ( PNMT) were employed to map the distribution of epinephrine-containing axonal profiles in the primate spinal cord. Smooth longitudinally oriented fibers were localized to the outer edge of the lateral funiculus. PNMT-containing axonal enlargements were distributed to the superficial dorsal horn, intermediate gray matter and the region surrounding the central canal at all spinal cord levels. PNMT-immunostained profiles were also observed in the intermediolateral cell column. A double labeling study employing retrograde transport of HRP from the spinal cord and PNMT immunohistochemistry identified a small population of HRP- PNMT-labeled neurons in the 'C1' region at the levels of the medulla and ponto-medullary junction. Thus, these cells are a probable source of adrenergic input to the spinal cord. Electrophysiological studies demonstrated that iontophoresis of epinephrine onto identified primate spinothalamic tract neurons in the lumbar dorsal horn resulted in inhibition of the glutamate-induced firing of these cells. The data from these studies support the hypothesis that adrenergic ( PNMT-containing) cells in the caudal brainstem project to all levels of the cord and may contribute to descending modulation of nociceptive processing at these levels.[1]

References

  1. Descending adrenergic input to the primate spinal cord and its possible role in modulation of spinothalamic cells. Carlton, S.M., Honda, C.N., Willcockson, W.S., Lacrampe, M., Zhang, D., Denoroy, L., Chung, J.M., Willis, W.D. Brain Res. (1991) [Pubmed]
 
WikiGenes - Universities