The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Glucagon Receptor Knockout Mice Display Increased Insulin Sensitivity and Impaired {beta}-Cell Function.

In previous studies, glucagon receptor knockout mice (Gcgr(-/-)) display reduced blood glucose and increased glucose tolerance, with hyperglucagonemia and increased levels of glucagon-like peptide (GLP)-1. However, the role of glucagon receptor signaling for the regulation of islet function and insulin sensitivity is unknown. We therefore explored beta-cell function and insulin sensitivity in Gcgr(-/-) and wild-type mice. The steady-state glucose infusion rate during hyperinsulinemic-euglycemic clamp was elevated in Gcgr(-/-) mice, indicating enhanced insulin sensitivity. Furthermore, the acute insulin response (AIR) to intravenous glucose was higher in Gcgr(-/-) mice. The augmented AIR to glucose was blunted by the GLP-1 receptor antagonist, exendin-3. In contrast, AIR to intravenous administration of other secretagogues was either not affected (carbachol) or significantly reduced (arginine, cholecystokinin octapeptide) in Gcgr(-/-) mice. In islets isolated from Gcgr(-/-) mice, the insulin responses to glucose and several insulin secretagogues were all significantly blunted compared with wild-type mice. Furthermore, glucose oxidation was reduced in islets from Gcgr(-/-) mice. In conclusion, the present study shows that glucagon signaling is required for normal beta-cell function and that insulin action is improved when disrupting the signal. In vivo, augmented GLP-1 levels compensate for the impaired beta-cell function in Gcgr(-/-) mice.[1]

References

  1. Glucagon Receptor Knockout Mice Display Increased Insulin Sensitivity and Impaired {beta}-Cell Function. S??rensen, H., Winzell, M.S., Brand, C.L., Fosgerau, K., Gelling, R.W., Nishimura, E., Ahren, B. Diabetes (2006) [Pubmed]
 
WikiGenes - Universities