The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of carbonic anhydrases in renal physiology.

Carbonic anhydrase (CA) catalyzes the reversible hydration of CO(2). CA is expressed in most segments of the kidney. CAII and CAIV predominate in human and rabbit kidneys; in rodent kidneys, CAXII, and CAXIV are also present. CAIX is expressed by renal cell carcinoma (RCC). Most of these isoforms, except for rodent CAIV, have high turnover rates. CAII is a cytoplasmic enzyme, whereas the others are membrane-associated; CAIV is anchored by glycosylphosphatidylinositol linkage. Membrane polarity is apical for CAXIV, basolateral for CAXII, and apical and basolateral for CAIV. Luminal membrane CAs facilitate the dehydration of carbonic acid (H(2)CO(3)) that is formed when secreted protons combine with filtered bicarbonate. Basolateral CA enhances the efflux of bicarbonate via dehydration of H(2)CO(3). CAII and CAIV can associate with bicarbonate transporters (e.g., AE1, kNBC1, NBC3, and SCL26A6), and proton antiporter, NHE1 in a membrane protein complex called a transport metabolon. CAXII and CAXIV may also be associated with transporters in normal kidney and CAIX in RCCs. The multiplicity of CAs implicates their importance in acid-base and other solute transport along the nephron. For example, CAII on the cytoplasmic face and CAIV on the extracellular surface provide the 'push' and 'pull' for bicarbonate transport by supplying and dissipating substrate respectively.Kidney International (2007) 71, 103-115. doi:10.1038/sj.ki.5002020; published online 13 December 2006.[1]

References

  1. The role of carbonic anhydrases in renal physiology. Purkerson, J.M., Schwartz, G.J. Kidney Int. (2007) [Pubmed]
 
WikiGenes - Universities