The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells.

Human MCF-7 breast cancer cells are relatively resistant to conventional chemotherapy due to the lack of caspase-3 activity. We reported recently that roscovitine (ROSC), a potent cyclin-dependent kinase 2 inhibitor, arrests human MCF-7 breast cancer cells in the G(2) phase of the cell cycle and concomitantly induces apoptosis. Exposure of MCF-7 cells to ROSC also strongly activates the wt p53 tumor suppressor protein in a time- and dose-dependent manner. The p53 level increased despite upregulation of Hdm-2 protein and was attributable to the site-specific phosphorylation at Ser-46. The p53 protein phosphorylated at serine 46 causes the up-regulation of the p53AIP1 protein, a component of mitochondria. In the present study we identified the pathway mediating ROSC-induced p53 activation. Exposure of MCF-7 cells to ROSC activated homeodomain-intereacting protein kinase-2 (HIPK2). The overexpression of wild-type but not kinase inactive HIPK2 increased the basal and ROSC-induced level of p53 phosphorylation at Ser-46 and strongly enhanced the rate of apoptosis in cells exposed to ROSC. We show that HIPK2 is activated by ROSC and mediates ROSC-induced P-Ser-46-p53, thereby stabilizing wt p53 and increasing the efficacy of drug-induced apoptosis in MCF-7 cells. These results identify HIPK2 as a component of the ROSC-induced signaling pathway leading to the stabilization and activation of wt p53 protein.[1]

References

  1. Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells. Wesierska-Gadek, J., Schmitz, M.L., Ranftler, C. J. Cell. Biochem. (2007) [Pubmed]
 
WikiGenes - Universities