The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt's lymphoma Akata cells.

Epigenetic silencing of regulatory genes by aberrant methylation contributes to tumorigenesis. DNA methyltransferase inhibitors (DNMTI) represent promising new drugs for anti-cancer therapies. The DNMTI 5-Azacytidine is effective against myelodysplastic syndrome, but induces switching of latent to lytic Epstein-Barr virus (EBV) in vitro and results in EBV DNA demethylation with the potential of induction of lytic EBV in vivo. This is of considerable concern given that recurrent lytic EBV has been linked with an increased incidence of EBV-associated lymphomas. Based on the distinct properties of action we hypothesized that the newer DNMTI Zebularine might differ from 5-Azacytidine in its potential to induce switching from latent to lytic EBV. Here we show that both 5-Azacytidine and Zebularine are able to induce expression of E-cadherin, a cellular gene frequently silenced by hypermethylation in cancers, and thus demonstrate that both DNMTI are active in our experimental setting consisting of EBV-harboring Burkitt's lymphoma Akata cells. Quantification of mRNA expression of EBV genes revealed that 5-Azacytidine induces switching from latent to lytic EBV and, in addition, that the immediate-early lytic infection progresses to early and late lytic infection. Furthermore, 5-Azacytidine induced upregulation of the latent EBV genes LMP2A, LMP2B, and EBNA2 in a similar fashion as observed following switching of latent to lytic EBV upon cross-linking of the B-cell receptor. In striking contrast, Zebularine did not exhibit any effect neither on lytic nor on latent EBV gene expression. Thus, Zebularine might be safer than 5-Azacytidine for the treatment of cancers in EBV carriers and could also be applied against EBV-harboring tumors, since it does not induce switching from latent to lytic EBV which may result in secondary EBV-associated malignancies.[1]


WikiGenes - Universities