The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Rab GTPase-Activating Protein AS160 Integrates Akt, Protein Kinase C, and AMP-Activated Protein Kinase Signals Regulating GLUT4 Traffic.

Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5' AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the downstream effectors linking these pathways to GLUT4 traffic are unknown. Here we explore the hypothesis that AS160 is a molecular link among diverse signaling cascades converging on GLUT4 translocation. PDGF and insulin increased AS160 phosphorylation in CHO-IR cells. Stimuli that activate c/n PKC or AMPK also elevated AS160 phosphorylation. We therefore examined if these signaling pathways engage AS160 to regulate GLUT4 traffic in muscle cells. Nonphosphorylatable AS160 (4P-AS160) virtually abolished the net surface GLUT4myc gains elicited by insulin, PDGF, K(+) depolarization, or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside but partly, yet significantly, inhibited the effects of 4-phorbol-12-myristate-13-acetate. However, the hypertonicity or 2,4-dinitrophenol-dependent gains in surface GLUT4myc were unaffected by 4P-AS160. RK-AS160 (GTPase-activating protein [GAP] inactive) or 4PRK-AS160 (GAP inactive, nonphosphorylatable) had no effect on surface GLUT4myc elicited by all stimuli. Collectively, these results indicate that activation of Akt, c/n PKC, or alpha2-AMPK intersect at AS160 to regulate GLUT4 traffic, as well as highlight the potential of AS160 as a therapy target to increase muscle glucose uptake.[1]

References

 
WikiGenes - Universities