The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RASA1  -  RAS p21 protein activator (GTPase...

Homo sapiens

Synonyms: CM-AVM, CMAVM, GAP, GTPase-activating protein, PKWS, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RASA1


Psychiatry related information on RASA1


High impact information on RASA1


Chemical compound and disease context of RASA1


Biological context of RASA1


Anatomical context of RASA1


Associations of RASA1 with chemical compounds


Physical interactions of RASA1


Enzymatic interactions of RASA1


Co-localisations of RASA1


Regulatory relationships of RASA1


Other interactions of RASA1

  • When expressed in non-mammalian systems, the region of the NF1 gene homologous to p120GAP produces a protein with GAP-like activity [39].
  • Thus, IQGAP1 appears to represent a novel RasGAP-like protein that may link Ras signaling to some calmodulin-mediated process [40].
  • Tyr(P)992 receptors were associated with more SOS, Ras-GTPase activating protein, phosphatidylinositol 3-kinase, and SHPTP2/syp, but less Grb2, than receptors in the general population, and these receptors were more heavily phosphorylated than the general population of active receptors [41].
  • Annexin A6 is a calcium-dependent membrane-binding protein that interacts with signalling proteins, including the GTPase-activating protein p120GAP, one of the most important inactivators of Ras [21].
  • However, elevated Ras-GTP levels were not the result of oncogenic Ras mutations, altered p120-GAP function, growth factor receptor activation, or abnormal p53, Rb, or p16 expression [42].

Analytical, diagnostic and therapeutic context of RASA1


  1. RASA1: variable phenotype with capillary and arteriovenous malformations. Boon, L.M., Mulliken, J.B., Vikkula, M. Curr. Opin. Genet. Dev. (2005) [Pubmed]
  2. A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Andersen, L.B., Ballester, R., Marchuk, D.A., Chang, E., Gutmann, D.H., Saulino, A.M., Camonis, J., Wigler, M., Collins, F.S. Mol. Cell. Biol. (1993) [Pubmed]
  3. Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth. Skorski, T., Kanakaraj, P., Ku, D.H., Nieborowska-Skorska, M., Canaani, E., Zon, G., Perussia, B., Calabretta, B. J. Exp. Med. (1994) [Pubmed]
  4. Microinjection of recombinant p21rho induces rapid changes in cell morphology. Paterson, H.F., Self, A.J., Garrett, M.D., Just, I., Aktories, K., Hall, A. J. Cell Biol. (1990) [Pubmed]
  5. Connecting the dots in Huntington's disease with protein interaction networks. Giorgini, F., Muchowski, P.J. Genome Biol. (2005) [Pubmed]
  6. A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. Soderling, S.H., Guire, E.S., Kaech, S., White, J., Zhang, F., Schutz, K., Langeberg, L.K., Banker, G., Raber, J., Scott, J.D. J. Neurosci. (2007) [Pubmed]
  7. Signal transduction by the B cell antigen receptor and its coreceptors. Cambier, J.C., Pleiman, C.M., Clark, M.R. Annu. Rev. Immunol. (1994) [Pubmed]
  8. G protein mechanisms: insights from structural analysis. Sprang, S.R. Annu. Rev. Biochem. (1997) [Pubmed]
  9. TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., Macdougald, O.A., You, M., Williams, B.O., Guan, K.L. Cell (2006) [Pubmed]
  10. Closing the GAP between Polarity and Vesicle Transport. Macara, I.G., Spang, A. Cell (2006) [Pubmed]
  11. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Kolfschoten, I.G., van Leeuwen, B., Berns, K., Mullenders, J., Beijersbergen, R.L., Bernards, R., Voorhoeve, P.M., Agami, R. Cell (2005) [Pubmed]
  12. Positive and negative regulation of TSC2 activity and its effects on downstream effectors of the mTOR pathway. Jozwiak, J., Jozwiak, S., Grzela, T., Lazarczyk, M. Neuromolecular Med. (2005) [Pubmed]
  13. Pregnancy switches adrenergic signal transduction in rat and human uterine myocytes as probed by BKCa channel activity. Zhou, X.B., Wang, G.X., Huneke, B., Wieland, T., Korth, M. J. Physiol. (Lond.) (2000) [Pubmed]
  14. PDGF induction of tyrosine phosphorylation of GTPase activating protein. Molloy, C.J., Bottaro, D.P., Fleming, T.P., Marshall, M.S., Gibbs, J.B., Aaronson, S.A. Nature (1989) [Pubmed]
  15. The carboxy-terminal catalytic domain of the GTPase-activating protein inhibits nuclear signal transduction and morphological transformation mediated by the CSF-1 receptor. Bortner, D.M., Ulivi, M., Roussel, M.F., Ostrowski, M.C. Genes Dev. (1991) [Pubmed]
  16. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors. McGlade, C.J., Ellis, C., Reedijk, M., Anderson, D., Mbamalu, G., Reith, A.D., Panayotou, G., End, P., Bernstein, A., Kazlauskas, A. Mol. Cell. Biol. (1992) [Pubmed]
  17. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor. Reedijk, M., Liu, X.Q., Pawson, T. Mol. Cell. Biol. (1990) [Pubmed]
  18. Functional role of GTPase-activating protein in cell transformation by pp60v-src. DeClue, J.E., Vass, W.C., Johnson, M.R., Stacey, D.W., Lowy, D.R. Mol. Cell. Biol. (1993) [Pubmed]
  19. CD4 ligands inhibit the formation of multifunctional transduction complexes involved in T cell activation. Jabado, N., Pallier, A., Le Deist, F., Bernard, F., Fischer, A., Hivroz, C. J. Immunol. (1997) [Pubmed]
  20. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. Sharma, P.M., Egawa, K., Huang, Y., Martin, J.L., Huvar, I., Boss, G.R., Olefsky, J.M. J. Biol. Chem. (1998) [Pubmed]
  21. Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Grewal, T., Evans, R., Rentero, C., Tebar, F., Cubells, L., de Diego, I., Kirchhoff, M.F., Hughes, W.E., Heeren, J., Rye, K.A., Rinninger, F., Daly, R.J., Pol, A., Enrich, C. Oncogene (2005) [Pubmed]
  22. Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. Barfod, E.T., Zheng, Y., Kuang, W.J., Hart, M.J., Evans, T., Cerione, R.A., Ashkenazi, A. J. Biol. Chem. (1993) [Pubmed]
  23. The importance of two conserved arginine residues for catalysis by the ras GTPase-activating protein, neurofibromin. Sermon, B.A., Lowe, P.N., Strom, M., Eccleston, J.F. J. Biol. Chem. (1998) [Pubmed]
  24. Mapping the site of interaction between annexin VI and the p120GAP C2 domain. Chow, A., Gawler, D. FEBS Lett. (1999) [Pubmed]
  25. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmüller, L., Lautwein, A., Schmitz, F., Wittinghofer, A. Science (1997) [Pubmed]
  26. A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. Tomar, A., Lim, S.T., Lim, Y., Schlaepfer, D.D. J. Cell. Sci. (2009) [Pubmed]
  27. SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes. Liu, Y.F., Deth, R.C., Devys, D. J. Biol. Chem. (1997) [Pubmed]
  28. Insulin-induced activation of phosphatidylinositol (PI) 3-kinase. Insulin-induced phosphorylation of insulin receptors and insulin receptor substrate-1 displaces phosphorylated platelet-derived growth factor receptors from binding sites on PI 3-kinase. Levy-Toledano, R., Blaettler, D.H., LaRochelle, W.J., Taylor, S.I. J. Biol. Chem. (1995) [Pubmed]
  29. Insulin receptor-mediated p62dok tyrosine phosphorylation at residues 362 and 398 plays distinct roles for binding GTPase-activating protein and Nck and is essential for inhibiting insulin-stimulated activation of Ras and Akt. Wick, M.J., Dong, L.Q., Hu, D., Langlais, P., Liu, F. J. Biol. Chem. (2001) [Pubmed]
  30. Upregulation of the RAS-GTPase activating protein (GAP)-binding protein (G3BP) in proliferating RPE cells. Kociok, N., Esser, P., Unfried, K., Parker, F., Schraermeyer, U., Grisanti, S., Toqué, B., Heimann, K. J. Cell. Biochem. (1999) [Pubmed]
  31. Amino acid 61 is a determinant of sensitivity of rap proteins to the ras GTPase activating protein. Hart, P.A., Marshall, C.J. Oncogene (1990) [Pubmed]
  32. Binding of the H-ras p21 GTPase activating protein by the activated epidermal growth factor receptor leads to inhibition of the p21 GTPase activity in vitro. Serth, J., Weber, W., Frech, M., Wittinghofer, A., Pingoud, A. Biochemistry (1992) [Pubmed]
  33. Erythropoietin induces p21ras activation and p120GAP tyrosine phosphorylation in human erythroleukemia cells. Torti, M., Marti, K.B., Altschuler, D., Yamamoto, K., Lapetina, E.G. J. Biol. Chem. (1992) [Pubmed]
  34. A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Gallouzi, I.E., Parker, F., Chebli, K., Maurier, F., Labourier, E., Barlat, I., Capony, J.P., Tocque, B., Tazi, J. Mol. Cell. Biol. (1998) [Pubmed]
  35. The GTPase-activating protein of Ras suppresses platelet-derived growth factor beta receptor signaling by silencing phospholipase C-gamma 1. Valius, M., Secrist, J.P., Kazlauskas, A. Mol. Cell. Biol. (1995) [Pubmed]
  36. Role of GTPases and GTPase regulatory proteins in oncogenesis. Grunicke, H.H., Maly, K. Critical reviews in oncogenesis. (1993) [Pubmed]
  37. Epidermal growth factor increases protein and messenger RNA expression levels of Ras GTPase activating protein. Soler, C., Felipe, A., Carpenter, G. Cell Growth Differ. (1994) [Pubmed]
  38. The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. Ozawa, T., Araki, N., Yunoue, S., Tokuo, H., Feng, L., Patrakitkomjorn, S., Hara, T., Ichikawa, Y., Matsumoto, K., Fujii, K., Saya, H. J. Biol. Chem. (2005) [Pubmed]
  39. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Basu, T.N., Gutmann, D.H., Fletcher, J.A., Glover, T.W., Collins, F.S., Downward, J. Nature (1992) [Pubmed]
  40. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. Weissbach, L., Settleman, J., Kalady, M.F., Snijders, A.J., Murthy, A.E., Yan, Y.X., Bernards, A. J. Biol. Chem. (1994) [Pubmed]
  41. Subsets of epidermal growth factor receptors during activation and endocytosis. Emlet, D.R., Moscatello, D.K., Ludlow, L.B., Wong, A.J. J. Biol. Chem. (1997) [Pubmed]
  42. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. Lau, N., Feldkamp, M.M., Roncari, L., Loehr, A.H., Shannon, P., Gutmann, D.H., Guha, A. J. Neuropathol. Exp. Neurol. (2000) [Pubmed]
  43. Purification, characterization, and western blot analysis of human GTPase-activating protein from native and recombinant sources. Halenbeck, R., Crosier, W.J., Clark, R., McCormick, F., Koths, K. J. Biol. Chem. (1990) [Pubmed]
  44. CD38 signal transduction in human B cell precursors. Rapid induction of tyrosine phosphorylation, activation of syk tyrosine kinase, and phosphorylation of phospholipase C-gamma and phosphatidylinositol 3-kinase. Silvennoinen, O., Nishigaki, H., Kitanaka, A., Kumagai, M., Ito, C., Malavasi, F., Lin, Q., Conley, M.E., Campana, D. J. Immunol. (1996) [Pubmed]
  45. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W.J., McCormick, F., Polakis, P. Cell (1991) [Pubmed]
  46. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Carpino, N., Wisniewski, D., Strife, A., Marshak, D., Kobayashi, R., Stillman, B., Clarkson, B. Cell (1997) [Pubmed]
  47. p120 GAP requirement in normal and malignant human hematopoiesis. Skorski, T., Kanakaraj, P., Nieborowska-Skorska, M., Ratajczak, M., Szczylik, C., Zon, G., Arlinghaus, R.B., Gewirtz, A., Perussia, B., Calabretta, B. J. Exp. Med. (1993) [Pubmed]
WikiGenes - Universities