The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase.

Pseudomonas aeruginosa produces a blue pigment, pyocyanin. Pyocyanin is a redox-active phenazine compound that kills mammalian and bacterial cells through the generation of reactive oxygen intermediates. We examined the mechanisms by which P. aeruginosa resists pyocyanin. [14C]pyocyanin was taken up by both Escherichia coli and P. aeruginosa, though more slowly by the latter. Cyanide-insensitive respiration, used as an indicator of intracellular superoxide and/or hydrogen peroxide production, was 50-fold less in pyocyanin-treated P. aeruginosa than in E. coli. P. aeruginosa showed less cyanide-insensitive respiration than E. coli upon exposure to other redox-active compounds (paraquat, streptonigrin, and plumbagin). Electron paramagnetic resonance spectrometry and spin trapping showed that P. aeruginosa generated less pyocyanin radical and superoxide than E. coli. Cell extracts from E. coli contained an NADPH:pyocyanin oxidoreductase which increased the rate of reduction of pyocyanin by NADPH. Conversely, cell extracts from P. aeruginosa contained no NADPH:pyocyanin oxidoreductase activity and actually decreased the rate of pyocyanin-mediated NADPH oxidation. Antioxidant defenses could also reduce the sensitivity of P. aeruginosa to pyocyanin. Under culture conditions of limited phosphate, both pyocyanin production and catalase activity were enhanced. Superoxide dismutase activity was also increased under low-phosphate conditions. When cells were grown in a high-phosphate succinate medium, P. aeruginosa formed a previously described iron-superoxide dismutase as well as a manganese-cofactored superoxide dismutase. These results demonstrate that P. aeruginosa resists pyocyanin because of limited redox cycling of this compound and that under conditions favoring pyocyanin production, catalase and superoxide dismutase activities increase.[1]

References

 
WikiGenes - Universities