The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase.

Coenzyme Q functions as a lipid-soluble electron carrier in eukaryotes. In Saccharomyces cerevisiae, the enzymes responsible for the assembly of the polyisoprenoid side chain and subsequent transfer to para-hydroxybenzoate (PHB) are encoded by the nuclear genes COQ1 and COQ2, respectively. Yeast mutants defective in coenzyme Q biosynthesis are respiratory defective and provide a useful tool to study this non-sterol branch of the isoprenoid biosynthetic pathway. We isolated a 5.5-kilobase genomic DNA fragment that was able to functionally complement a coq2 strain. Additional complementation analyses located the COQ2 gene within a 2.1-kilobase HindIII-BglII restriction fragment. Sequence analyses revealed the presence of a 1,116-base pair open reading frame coding for a predicted protein of 372 amino acids and a molecular mass of 41,001 daltons. The amino acid sequence exhibits a typical amino-terminal mitochondrial leader sequence and six potential membrane-spanning domains. Primer extension and Northern analyses indicate the gene is transcriptionally active. Transformation of a coq2 strain with the 2.1-kilobase HindIII-BglII genomic restriction fragment on a multicopy plasmid restores PHB:polyprenyltransferase activity to wild-type levels. Disruption of the chromosomal COQ2 gene indicates the gene is not essential for viability, yet is required for PHB:polyprenyltransferase activity and respiratory function. In addition, the deduced amino acid sequence of PHB:polyprenyltransferase contains a putative allylic polyprenyl diphosphate-binding site. The presence of this aspartate-rich domain in a number of functionally distinct proteins which utilize polyprenyl diphosphate substrates is reported.[1]


  1. COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase. Ashby, M.N., Kutsunai, S.Y., Ackerman, S., Tzagoloff, A., Edwards, P.A. J. Biol. Chem. (1992) [Pubmed]
WikiGenes - Universities