The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Ubichinon     2,3-dimethoxy-5-methyl-6-(3- methylbut-2...

Synonyms: Ubiquinone-5, Ubiquinone 1, Ubiquinone 5, a ubiquinone, Coenzymes Q, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Coenzyme Q

  • Mixtures that have been separated with supercritical carbon dioxide include resin acids with the empirical formula C20H30O2 and ubiquinones from bacterial cell wall extracts of Legionella pneumophila [1].
  • The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone [2].
  • Proton transfer from the bulk to the bound ubiquinone Q(B) of the reaction center in chromatophores of Rhodobacter sphaeroides: retarded conveyance by neutral water [3].
  • Crystals of protein from Blastochloris viridis (formerly Rhodopseudomonas viridis) were reconstituted with ubiquinone and analyzed by monochromatic and Laue diffraction, in the dark and 3 ms after illuminating the crystal with a pulsed laser (630 nm, 3 mJ/pulse, 7 ns duration) [4].
  • Although humans can synthesize coenzyme Q10, the anti-P. carinii activity and low toxicity of ubiquinone analogs such as atovaquone suggest that the electron transport chain in the pathogen may differ importantly from that in the host [5].
 

Psychiatry related information on Coenzyme Q

 

High impact information on Coenzyme Q

 

Chemical compound and disease context of Coenzyme Q

 

Biological context of Coenzyme Q

  • A model based on the difference between the two structures is proposed to explain the observed kinetics of electron transfer from QA-QB to QAQB- and the relative binding affinities of the different ubiquinone species in the QB pocket [20].
  • The plasma membrane (PM) contains redox enzymes that provide electrons for energy metabolism and recycling of antioxidants such as coenzyme Q and alpha-tocopherol [21].
  • The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth [22].
  • In the presence of NADH and ubiquinone-1, the vesicles also generate a membrane potential (interior negative) that is similar in magnitude to that observed in the presence of D-lactate [23].
  • Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized [24].
 

Anatomical context of Coenzyme Q

 

Associations of Coenzyme Q with other chemical compounds

 

Gene context of Coenzyme Q

 

Analytical, diagnostic and therapeutic context of Coenzyme Q

References

  1. Supercritical fluid chromatography. Gere, D.R. Science (1983) [Pubmed]
  2. Mechanism of the electron transfer catalyst DsbB from Escherichia coli. Grauschopf, U., Fritz, A., Glockshuber, R. EMBO J. (2003) [Pubmed]
  3. Proton transfer from the bulk to the bound ubiquinone Q(B) of the reaction center in chromatophores of Rhodobacter sphaeroides: retarded conveyance by neutral water. Gopta, O.A., Cherepanov, D.A., Junge, W., Mulkidjanian, A.Y. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  4. Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Baxter, R.H., Ponomarenko, N., Srajer, V., Pahl, R., Moffat, K., Norris, J.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  5. The lipids of Pneumocystis carinii. Kaneshiro, E.S. Clin. Microbiol. Rev. (1998) [Pubmed]
  6. Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington's disease. Parker, W.D., Boyson, S.J., Luder, A.S., Parks, J.K. Neurology (1990) [Pubmed]
  7. Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. Söderberg, M., Edlund, C., Alafuzoff, I., Kristensson, K., Dallner, G. J. Neurochem. (1992) [Pubmed]
  8. Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc1 complex. Ding, H., Moser, C.C., Robertson, D.E., Tokito, M.K., Daldal, F., Dutton, P.L. Biochemistry (1995) [Pubmed]
  9. Serum and muscle tissue ubiquinone levels in healthy subjects. Laaksonen, R., Riihimäki, A., Laitila, J., Mårtensson, K., Tikkanen, M.J., Himberg, J.J. J. Lab. Clin. Med. (1995) [Pubmed]
  10. Hypothalamic digoxin deficiency in obsessive compulsive disorder and la Tourette's syndrome. Kurup, R.K., Kurup, P.A. Int. J. Neurosci. (2002) [Pubmed]
  11. Crystal structure of mitochondrial respiratory membrane protein complex II. Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., Rao, Z. Cell (2005) [Pubmed]
  12. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Ishii, N., Fujii, M., Hartman, P.S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., Suzuki, K. Nature (1998) [Pubmed]
  13. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Larsen, P.L., Clarke, C.F. Science (2002) [Pubmed]
  14. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Tu, B.P., Ho-Schleyer, S.C., Travers, K.J., Weissman, J.S. Science (2000) [Pubmed]
  15. One-step purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinate-reducible cytochrome b556. Kita, K., Vibat, C.R., Meinhardt, S., Guest, J.R., Gennis, R.B. J. Biol. Chem. (1989) [Pubmed]
  16. C-terminal periplasmic domain of Escherichia coli quinoprotein glucose dehydrogenase transfers electrons to ubiquinone. Elias, M., Tanaka, M., Sakai, M., Toyama, H., Matsushita, K., Adachi, O., Yamada, M. J. Biol. Chem. (2001) [Pubmed]
  17. Electron and proton transport in the ubiquinone cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroides. Patterns of binding and inhibition by antimycin. van den Berg, W.H., Prince, R.C., Bashford, C.L., Takamiya, K.I., Bonner, W.D., Dutton, P.L. J. Biol. Chem. (1979) [Pubmed]
  18. Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli. Maklashina, E., Hellwig, P., Rothery, R.A., Kotlyar, V., Sher, Y., Weiner, J.H., Cecchini, G. J. Biol. Chem. (2006) [Pubmed]
  19. Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase. Elias, M.D., Nakamura, S., Migita, C.T., Miyoshi, H., Toyama, H., Matsushita, K., Adachi, O., Yamada, M. J. Biol. Chem. (2004) [Pubmed]
  20. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Stowell, M.H., McPhillips, T.M., Rees, D.C., Soltis, S.M., Abresch, E., Feher, G. Science (1997) [Pubmed]
  21. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Hyun, D.H., Emerson, S.S., Jo, D.G., Mattson, M.P., de Cabo, R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  22. Requirement for coenzyme Q in plasma membrane electron transport. Sun, I.L., Sun, E.E., Crane, F.L., Morré, D.J., Lindgren, A., Löw, H. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  23. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli. Stroobant, P., Kaback, H.R. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  24. Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Burger, G., Lang, B.F., Reith, M., Gray, M.W. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Ishizaki, K., Larson, T.R., Schauer, N., Fernie, A.R., Graham, I.A., Leaver, C.J. Plant Cell (2005) [Pubmed]
  26. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Frei, B., Kim, M.C., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  27. Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Villalba, J.M., Navarro, F., Córdoba, F., Serrano, A., Arroyo, A., Crane, F.L., Navas, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  28. Interaction of ubisemiquinone with a paramagnetic component in heart tissue. Ruzicka, F.J., Beinert, H., Schepler, K.L., Dunham, W.R., Sands, R.H. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  29. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacticacidemia. Robinson, B.H., McKay, N., Goodyer, P., Lancaster, G. Am. J. Hum. Genet. (1985) [Pubmed]
  30. Quantitation of prenylcysteines by a selective cleavage reaction. Epstein, W.W., Lever, D., Leining, L.M., Bruenger, E., Rilling, H.C. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  31. Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Kadokura, H., Bader, M., Tian, H., Bardwell, J.C., Beckwith, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  32. Characterization of a mutation that abolishes quinone reduction by electron transfer flavoprotein-ubiquinone oxidoreductase. Beard, S.E., Goodman, S.I., Bemelen, K., Frerman, F.E. Hum. Mol. Genet. (1995) [Pubmed]
  33. Biochemical features of mtDNA 14484 (ND6/M64V) point mutation associated with Leber's hereditary optic neuropathy. Carelli, V., Ghelli, A., Bucchi, L., Montagna, P., De Negri, A., Leuzzi, V., Carducci, C., Lenaz, G., Lugaresi, E., Degli Esposti, M. Ann. Neurol. (1999) [Pubmed]
  34. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane. Navarro, F., Navas, P., Burgess, J.R., Bello, R.I., De Cabo, R., Arroyo, A., Villalba, J.M. FASEB J. (1998) [Pubmed]
  35. Reproductive fitness and quinone content of Caenorhabditis elegans clk-1 mutants fed coenzyme Q isoforms of varying length. Jonassen, T., Davis, D.E., Larsen, P.L., Clarke, C.F. J. Biol. Chem. (2003) [Pubmed]
  36. Complementation of Saccharomyces cerevisiae coq7 mutants by mitochondrial targeting of the Escherichia coli UbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis. Tran, U.C., Marbois, B., Gin, P., Gulmezian, M., Jonassen, T., Clarke, C.F. J. Biol. Chem. (2006) [Pubmed]
  37. Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. Jonassen, T., Clarke, C.F. J. Biol. Chem. (2000) [Pubmed]
  38. The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). Dibrov, E., Fu, S., Lemire, B.D. J. Biol. Chem. (1998) [Pubmed]
  39. The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding. Oyedotun, K.S., Lemire, B.D. J. Biol. Chem. (1999) [Pubmed]
  40. A Solanesyl-diphosphate Synthase Localizes in Glycosomes of Trypanosoma cruzi. Ferella, M., Montalvetti, A., Rohloff, P., Miranda, K., Fang, J., Reina, S., Kawamukai, M., B??a, J., Nilsson, D., Pravia, C., Katzin, A., Cassera, M.B., Aslund, L., Andersson, B., Docampo, R., Bontempi, E.J. J. Biol. Chem. (2006) [Pubmed]
  41. Cloning, gene sequencing, and expression of the small molecular mass ubiquinone-binding protein of mitochondrial ubiquinol-cytochrome c reductase. Yu, L., Deng, K., Yu, C.A. J. Biol. Chem. (1995) [Pubmed]
  42. High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Baldwin, J., Michnoff, C.H., Malmquist, N.A., White, J., Roth, M.G., Rathod, P.K., Phillips, M.A. J. Biol. Chem. (2005) [Pubmed]
  43. Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a ket enzyme in shikonin biosynthesis. Yazaki, K., Kunihisa, M., Fujisaki, T., Sato, F. J. Biol. Chem. (2002) [Pubmed]
  44. Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. Watson, P.S., Scalia, G.M., Galbraith, A., Burstow, D.J., Bett, N., Aroney, C.N. J. Am. Coll. Cardiol. (1999) [Pubmed]
 
WikiGenes - Universities