The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Responsiveness to glucagon in fetal hearts. Species variability and apparent disparities between changes in beating, adenylate cyclase activation, and cyclic AMP concentration.

Previous studies of the ability of the immature heart to respond to glucagon have yielded conflicting results. To test the possibility that the apparent discrepancies might be explained in part by species variability, isolated hearts of fetal mice and rats (13-22 days' gestational age) were studied under identical conditions in vitro. Changes in atrial rate and ventricular contractility were measured in spontaneously beating hearts exposed to glucagon, and activation of adenylate cyclase was assayed in cardiac homogenates. In mice of 16 days' gestational age or less, there was no change in heart rate in response to glucagon; at 17-18 days, minimal responsiveness was present; and after 19 days, 10muM glucagon caused an increase in spontaneous atrial rate of 30 +/- 4% (SEM) (P less than 0.001). Measurement of the extent and speed of volume displacement of the isotonically contracting hearts with a specially constructed capacitance transducer revealed that ventricular inotropic responsiveness also appeared after 17-19 days. Cardiac stores of glycogen were reduced in older hearts exposed to glucagon, but not in those aged less than 16 days. In contrast, glucagon failed to activate adenylate cyclase in homogenates of hearts of fetal mice at any age. Furthermore, glucagon failed to elicit an increase in the concentration of cyclic AMP in spontaneously beating hearts that developed tachycardia. Responses in hearts of fetal rats were distinctly different from those in mouse hearts: at no age was there any change in heart rate, strength of contraction, glycogen content, or adenylate cyclase activation. Thus, there are major species differences in cardiac pharmacological maturation. Although the mouse heart develops the ability to increase its rate and strength of contraction and to undergo glycogenolysis in response to glucagon well before birth, the rat heart does not. In addition, there is an apparent disparity in late fetal mouse hearts between the ability of glucagon to induce functional responses and its ability to stimulate adenylate cyclase and increase cyclic AMP levels. It is impossible, of course, to rule out absolutely the possibility that localized increases in a critical cyclic AMP pool were present but too small to measure in the entire tissue. Nevertheless, the most obvious interpretation of our results is that they are compatible with the hypothesis that glucagon may exert some of its hemodynamic effects independently from the adenylate cyclase-cyclic AMP system in the late-fetal mouse heart.[1]

References

 
WikiGenes - Universities