The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Gcg  -  glucagon

Rattus norvegicus

Synonyms: Glucagon
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gcg


Psychiatry related information on Gcg


High impact information on Gcg


Chemical compound and disease context of Gcg


Biological context of Gcg


Anatomical context of Gcg


Associations of Gcg with chemical compounds

  • MAP kinase activation was also attenuated by forskolin and glucagon, which increase intracellular cAMP, and by dibutyryl-cAMP, 8-bromo-cAMP, and 8-(4-chlorophenylthio)-cAMP [25].
  • Glucagon also significantly increased hepatocyte membrane water permeability by about 70%, which was inhibited by the water channel blocker dimethyl sulfoxide (DMSO) [22].
  • In fed rats, glucagon is not responsible for the daily glucose rhythm [6].
  • When endogenous glucagon release was enhanced by isoproterenol (100 nmol/l), no amplification was seen in the simultaneous or subsequent insulin secretory response to glucose [23].
  • We have utilized both [5-15N]glutamine and [3-13C] pyruvate as metabolic tracers in order to: (i) examine the effect of pH, glucagon (GLU), or insulin on the precursor-product relationship between 15NH3, [15N]citrulline, and, thereby, [15N]urea synthesis and (ii) elucidate the mechanism(s) by which pyruvate stimulates [15N] urea synthesis [26].

Physical interactions of Gcg

  • Although the exact mechanism remains unknown, there is no doubt that the liver can adapt to physiological stress through modulation of GR binding characteristics to enhance the hepatic glucose production responsiveness to glucagon [27].
  • Four selected monoclonal antibodies were all of the IgG 2a subclass type kappa and bound to protein A. One monoclonal antibody (23.8B6) was shown to be directed toward the C-terminal region and another (23.6B4) toward the N-terminal to central region of the glucagon molecule [28].
  • The present study now shows that the glucagon G3 transcription factor binds to DNA sequences within cis-acting elements of the rat somatostatin and rat insulin-I genes that have been defined by others as pancreatic islet-specific transcriptional enhancers [29].
  • The results suggest a role of the regulatory guanyl nucleotide-binding protein in diabetes leading to an increased dose response relationship of the hepatic adenylate cyclase system to glucagon [30].
  • It is suggested that phosphoenolpyruvate carboxykinase rather than amino acid transport is the key pacemaker reaction in the long-term incubation since the direction and magnitude of the response for glucocorticoid and glucagon stimulation of glucose production is the same whether alanine or lactate is used as the 3-carbon precursor [31].

Enzymatic interactions of Gcg


Co-localisations of Gcg


Regulatory relationships of Gcg


Other interactions of Gcg


Analytical, diagnostic and therapeutic context of Gcg


  1. Zinc, Not Insulin, Regulates the Rat {alpha}-Cell Response to Hypoglycemia In Vivo. Zhou, H., Zhang, T., Harmon, J.S., Bryan, J., Robertson, R.P. Diabetes (2007) [Pubmed]
  2. Regulatory effect of glucagon on its own receptor concentrations and target-cell sensitivity in the rat. Santos, A., Blazquez, E. Diabetologia (1982) [Pubmed]
  3. Impaired glucagon response to sympathetic nerve stimulation in the BB diabetic rat: effect of early sympathetic islet neuropathy. Mundinger, T.O., Mei, Q., Figlewicz, D.P., Lernmark, A., Taborsky, G.J. Am. J. Physiol. Endocrinol. Metab. (2003) [Pubmed]
  4. Localization of the rat genes encoding glucagon, glucagon receptor, and insulin receptor, candidates for diabetes mellitus susceptibility loci. Szpirer, C., Szpirer, J., Vanvooren, P., Rivière, M., Maget, B., Svoboda, M., Shiozawa, M., Simon, J.S., Jacob, H.J., Koike, G. Mamm. Genome (1997) [Pubmed]
  5. Glucagon-stimulable adenylyl cyclase in rat liver. The impact of streptozotocin-induced diabetes mellitus. Dighe, R.R., Rojas, F.J., Birnbaumer, L., Garber, A.J. J. Clin. Invest. (1984) [Pubmed]
  6. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Ruiter, M., La Fleur, S.E., van Heijningen, C., van der Vliet, J., Kalsbeek, A., Buijs, R.M. Diabetes (2003) [Pubmed]
  7. Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Langhans, W., Zeiger, U., Scharrer, E., Geary, N. Science (1982) [Pubmed]
  8. Receptor-operated calcium influx in rat hepatocytes. Identification and characterization using manganese. Kass, G.E., Llopis, J., Chow, S.C., Duddy, S.K., Orrenius, S. J. Biol. Chem. (1990) [Pubmed]
  9. Selective loss of ornithine decarboxylase response to adrenergic agonists and glucagon during food deprivation of neonatal rats. Kuhn, C.M., McMillian, M.K., Schanberg, S.M. J. Pharmacol. Exp. Ther. (1983) [Pubmed]
  10. Glucagon and the paraventricular hypothalamus: modulation of energy balance. Atrens, D.M., Menéndez, J.A. Brain Res. (1993) [Pubmed]
  11. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Koch, K.S., Leffert, H.L. Cell (1979) [Pubmed]
  12. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Tang-Christensen, M., Larsen, P.J., Thulesen, J., Rømer, J., Vrang, N. Nat. Med. (2000) [Pubmed]
  13. Regulation of glucagon receptor mRNA in cultured primary rat hepatocytes by glucose and cAMP. Abrahamsen, N., Lundgren, K., Nishimura, E. J. Biol. Chem. (1995) [Pubmed]
  14. Glucagon-stimulated but not isoproterenol-stimulated glucose formation inhibition by interleukin-6 in primary cultured rat hepatocytes. Quaas, M., Stümpel, F., Christ, B. Horm. Metab. Res. (2005) [Pubmed]
  15. Altered insulin and glucagon secretion in treated genetic hyperlipemia: a mechanism of theraphy? Eaton, R.P., Oase, R., Schade, D.S. Metab. Clin. Exp. (1976) [Pubmed]
  16. Effects of insulin and beta-adrenergic blockade on certain indicators of carbohydrate metabolism in the blood and tissues of rats during short-lasting hypothermia. Torlińska, T., Paluszak, J., Gryczka, A.Z., Torliński, L., Walkowiak, K., Koźlik, J. Acta physiologica Polonica. (1982) [Pubmed]
  17. Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway. Gabbay, R.A., Sutherland, C., Gnudi, L., Kahn, B.B., O'Brien, R.M., Granner, D.K., Flier, J.S. J. Biol. Chem. (1996) [Pubmed]
  18. Liraglutide, a Long-Acting Glucagon-Like Peptide-1 Analog, Reduces Body Weight and Food Intake in Obese Candy-Fed Rats, Whereas a Dipeptidyl Peptidase-IV Inhibitor, Vildagliptin, Does Not. Raun, K., von Voss, P., Gotfredsen, C.F., Golozoubova, V., Rolin, B., Knudsen, L.B. Diabetes (2007) [Pubmed]
  19. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. Mojsov, S., Heinrich, G., Wilson, I.B., Ravazzola, M., Orci, L., Habener, J.F. J. Biol. Chem. (1986) [Pubmed]
  20. Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Ding, W.G., Renström, E., Rorsman, P., Buschard, K., Gromada, J. Diabetes (1997) [Pubmed]
  21. Glucagon gene sequence. Four of six exons encode separate functional domains of rat pre-proglucagon. Heinrich, G., Gros, P., Habener, J.F. J. Biol. Chem. (1984) [Pubmed]
  22. Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Gradilone, S.A., García, F., Huebert, R.C., Tietz, P.S., Larocca, M.C., Kierbel, A., Carreras, F.I., Larusso, N.F., Marinelli, R.A. Hepatology (2003) [Pubmed]
  23. Assessment of the role of interstitial glucagon in the acute glucose secretory responsiveness of in situ pancreatic beta-cells. Moens, K., Berger, V., Ahn, J.M., Van Schravendijk, C., Hruby, V.J., Pipeleers, D., Schuit, F. Diabetes (2002) [Pubmed]
  24. Regulation of glucagon and glucagon-like peptide-1 receptor messenger ribonucleic acid expression in cultured rat pancreatic islets by glucose, cyclic adenosine 3',5'-monophosphate, and glucocorticoids. Abrahamsen, N., Nishimura, E. Endocrinology (1995) [Pubmed]
  25. Increasing cAMP attenuates activation of mitogen-activated protein kinase. Sevetson, B.R., Kong, X., Lawrence, J.C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Regulation of [15N]urea synthesis from [5-15N]glutamine. Role of pH, hormones, and pyruvate. Nissim, I., Yudkoff, M., Brosnan, J.T. J. Biol. Chem. (1996) [Pubmed]
  27. Glucagon receptors: effect of exercise and fasting. Lavoie, C. Canadian journal of applied physiology = Revue canadienne de physiologie appliquée. (2005) [Pubmed]
  28. Production and characterization of N-terminally and C-terminally directed monoclonal antibodies against pancreatic glucagon. Gregor, M., Riecken, E.O. Gastroenterology (1985) [Pubmed]
  29. The pancreatic islet-specific glucagon G3 transcription factors recognize control elements in the rat somatostatin and insulin-I genes. Knepel, W., Vallejo, M., Chafitz, J.A., Habener, J.F. Mol. Endocrinol. (1991) [Pubmed]
  30. Increased dose-response relationship of liver plasma membrane adenylate cyclase to glucagon stimulation in diabetic rats. A possible role of the guanyl nucleotide-binding regulatory protein. Allgayer, H., Bachmann, W., Hepp, K.D. Diabetologia (1982) [Pubmed]
  31. Coordinate regulation of gluconeogenesis by the glucocorticoids and glucagon: evidence for acute and chronic regulation by glucagon. Kletzien, R.F., Weber, C.A., Stumpo, D.J. J. Cell. Physiol. (1981) [Pubmed]
  32. ATP-citrate lyase. Structure of a tryptic peptide containing the phosphorylation site directed by glucagon and the cAMP-dependent protein kinase. Pierce, M.W., Palmer, J.L., Keutmann, H.T., Avruch, J. J. Biol. Chem. (1981) [Pubmed]
  33. Cellular localization of calmodulin-dependent protein kinases I and II to A-cells and D-cells of the endocrine pancreas. Matovcik, L.M., Nairn, A.C., Gorelick, F.S. J. Histochem. Cytochem. (1998) [Pubmed]
  34. Glucagon receptor-mediated extracellular signal-regulated kinase 1/2 phosphorylation in rat mesangial cells: role of protein kinase A and phospholipase C. Li, X.C., Carretero, O.A., Shao, Y., Zhuo, J.L. Hypertension (2006) [Pubmed]
  35. Inhibition of rat hepatocyte proliferation by transforming growth factor beta and glucagon is associated with inhibition of ERK2 and p70 S6 kinase. Dixon, M., Agius, L., Yeaman, S.J., Day, C.P. Hepatology (1999) [Pubmed]
  36. Activation of the ras mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin. Sutherland, C., Waltner-Law, M., Gnudi, L., Kahn, B.B., Granner, D.K. J. Biol. Chem. (1998) [Pubmed]
  37. Activation and glucagon regulation of mitogen-activated protein kinases (MAPK) by insulin and epidermal growth factor in cultured rat and human hepatocytes. Ulrich, R.G., Cramer, C.T., Adams, L.A., Kletzien, R.F. Cell Biochem. Funct. (1998) [Pubmed]
  38. Purification and sequence of rat oxyntomodulin. Collie, N.L., Walsh, J.H., Wong, H.C., Shively, J.E., Davis, M.T., Lee, T.D., Reeve, J.R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  39. Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Dunphy, J.L., Taylor, R.G., Fuller, P.J. Mol. Cell. Endocrinol. (1998) [Pubmed]
  40. A reassessment of structure-function relationships in glucagon. Glucagon1-21 is a full agonist. Wright, D.E., Hruby, V.J., Rodbell, M. J. Biol. Chem. (1978) [Pubmed]
  41. Guinea pig glucagon differs from other mammalian glucagons. Huang, C.G., Eng, J., Pan, Y.C., Hulmes, J.D., Yalow, R.S. Diabetes (1986) [Pubmed]
WikiGenes - Universities