The transcription factor Wilms tumor 1 regulates matrix metalloproteinase-9 through a nitric oxide-mediated pathway.
Matrix metalloproteinase-9 (MMP-9) is released by human lung epithelial cells (LEC) in conditions such as asthma and chronic obstructive pulmonary disease and expression of MMP-9 correlates with the severity of these disorders. MMP-9 production has been reported to be regulated by a NO/soluble guanylate cyclase-dependent pathway. Transcriptional regulation of this enzyme, however, is poorly understood. Using phylogenetic analysis, we observed a highly conserved sequence in the 5' flanking region of the MMP-9 gene containing binding sites for the transcription factor Wilms tumor 1 (WT1). We confirmed the presence of WT1 in human LEC and that treatment with TNF or a mixture containing LPS, PMA, and IFN-gamma resulted in translocation of WT1 from the nucleus to the cytosol. This translocation coincided with increased expression of MMP-9 and could be blocked by inhibitors of the NO/soluble guanylate cyclase pathway. WT1 knockdown using small-interfering RNA up-regulated MMP-9 expression in the presence of the NO synthase inhibitor 1400W. Using either WT1 pulldown with probes for the conserved region of the MMP-9 promoter or chromatin immunoprecipitation, we confirmed WT1 binding to the MMP-9 promoter. These findings indicate WT1 is a repressor of MMP-9, regulated by a NO-mediated pathway in human LEC. To our knowledge, this is the first report of WT1 regulating MMP-9 expression. Further study is needed to determine whether clinical conditions exhibiting tissue remodeling, such as asthma and/or chronic obstructive pulmonary disease, demonstrate reduced levels of WT1 or its repressor activity.[1]References
- The transcription factor Wilms tumor 1 regulates matrix metalloproteinase-9 through a nitric oxide-mediated pathway. Marcet-Palacios, M., Ulanova, M., Duta, F., Puttagunta, L., Munoz, S., Gibbings, D., Radomski, M., Cameron, L., Mayers, I., Befus, A.D. J. Immunol. (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg