The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes: relevance to pathological-signalling cascades.

The products of the Herpes simplex (HSV-1) genome interact with many Alzheimer's disease susceptibility genes or proteins. These in turn affect those of the virus. For example, HSV-1 binds to heparan sulphate proteoglycans (HSPG2), or alpha-2-macroglobulin (A2M), and enters cells via nectin receptors, which are cleaved by gamma-secretase (APH1B, PSEN1, PSEN2, PEN2, NCSTN). The virus also binds to blood-borne lipoproteins and apolipoprotein E (APOE) is able to modify its infectivity. Viral uptake is cholesterol- and lipid raft-dependent (DHCR24, HMGCR, FDPS, RAFTLIN, SREBF1). The virus is transported to the nucleus via the dynein and kinesin (KNS2) motors associated with the microtubule network (MAPT). Amyloid precursor protein (APP) plays a role in this transport. Nuclear export is mediated via disruption of the nuclear lamina and binding to LMNA. Herpes simplex activates kinases (CDC2 and casein kinase 2) whose substrates include APOE, APP, MAPT, PSEN2, and SREBF1. A viral protein is also able to delete mitochondrial DNA, a situation prevalent in Alzheimer's disease. The virus binds to the host transcription factors transcription factor CP2 (TFCP2) and POU2F1 that control many other genes associated with Alzheimer's disease. Viral latency is controlled by IL6 and IL1B and at different stages of its life cycle the virus can either promote or attenuate apoptosis via Fas and tumor necrosis factor pathways (FAS, TNF, DAPK1, PARP1). Viral evasion strategies include inhibition of the antigen processor TAP2, the production of an Fc immunoglobulin receptor mimic (FCER1G) and inhibition of the viral-activated kinase EIF2AK2. These and other host/viral interactions, targeted to certain Alzheimer's disease susceptibility genes, support the idea that some form of synergy between the pathogen and genetic factors may play a role in the pathology of late-onset Alzheimer's disease.[1]


WikiGenes - Universities