The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inhibition of colony-stimulating factor-stimulated macrophage proliferation by tumor necrosis factor-alpha, IFN-gamma, and lipopolysaccharide is not due to a general loss of responsiveness to growth factor.

The role of stimulatory factors, such as the CSF, in the regulation of hemopoiesis has been extensively documented. Less is known of the negative regulators of hemopoiesis. In this report, we show that the macrophage activating agents, TNF-alpha, IFN-gamma, and LPS, are all potent inhibitors of CSF-1-stimulated murine bone marrow-derived macrophage (BMM) DNA synthesis and increase in cell numbers. The inhibitory effects of TNF-alpha and IFN-gamma do not appear to be due to endotoxin contamination in the recombinant cytokine preparations. The inhibition of proliferation is reversible and is not due to a general loss of growth factor responsiveness, inasmuch as the three agents do not inhibit CSF-1-stimulated BMM survival, protein synthesis, or fluid phase pinocytosis. Because TNF-alpha and LPS are known to rapidly and potently down-modulate CSF-1 receptor levels in BMM, the results also suggest that low levels of receptor occupancy are sufficient for biological responses to CSF-1. The inhibitory effects of TNF-alpha, IFN-gamma, or LPS were also seen when granulocyte-macrophage-CSF or IL-3 was used to stimulate BMM DNA synthesis. The results suggest that TNF-alpha, IFN-gamma, and LPS appear to be inhibiting CSF-stimulated proliferation by acting at a post-receptor level, possibly by regulation of some critical event(s) in the mitogenic signaling pathway.[1]


WikiGenes - Universities