The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pinocytosis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pinocytosis

 

High impact information on Pinocytosis

 

Chemical compound and disease context of Pinocytosis

 

Biological context of Pinocytosis

 

Anatomical context of Pinocytosis

 

Associations of Pinocytosis with chemical compounds

  • (a) Selective stimulation of azurophil granule secretion by the Na-ionophore Monensin, or nonselective stimulation by FMLP after cytochalasin B pretreatment elicited marked pinocytic activity in parallel with azurophil granule release, whereas FMLP alone, selective for specific granules, elicited little fluid pinocytosis [23].
  • We recently presented data showing that mannose-6-phosphate was a potent competitive inhibitor of pinocytosis of human platelet beta-glucuronidase, and that treatment of "high-uptake" forms of the enzyme with alkaline phosphatase destroyed the high-uptake property of the enzyme without diminishing its catalytic activity [19].
  • Within the concentration range 0.15-24 mug/ml, the 125I-labeled polyvinylpyrrolidone neither stimulated nor inhibited pinocytosis [24].
  • Macropinosomes were pulse labeled for 1 min with fixable fluorescein dextran (FDx10f), a probe for fluid phase pinocytosis, and chased for various times [25].
  • Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling [26].
 

Gene context of Pinocytosis

  • By contrast, IL-10 or IFN-gamma decreased both fluid phase pinocytosis and mannose receptor-mediated uptake [27].
  • VacA pinocytosis was controlled by Cdc42 and did not require cellular tyrosine kinases, dynamin 2, ADP-ribosylating factor 6, or RhoA GTPase activities [28].
  • The inhibition of proliferation is reversible and is not due to a general loss of growth factor responsiveness, inasmuch as the three agents do not inhibit CSF-1-stimulated BMM survival, protein synthesis, or fluid phase pinocytosis [29].
  • Because Tg is highly concentrated in the colloid, fluid-phase pinocytosis or low-affinity receptors should provide sufficient Tg uptake for hormone release; high-affinity receptors may serve to target Tg away from lysosomes, through recycling into the colloid or by transcytosis into the bloodstream [30].
  • Activated ARF6 also stimulated actin assembly at foci on the ventral surface of the cell and stimulated fluid phase pinocytosis [31].
 

Analytical, diagnostic and therapeutic context of Pinocytosis

References

  1. Effect of Corynebacterium parvum, methanol-extraction residue of BCG, and levamisole on macrophage random migration, chemotaxis, and pinocytosis. Sher, N.A., Poplack, D.G., Blaese, R.M., Brown, T.M., Chaparas, S.D. J. Natl. Cancer Inst. (1977) [Pubmed]
  2. Acidification of phagosomes is initiated before lysosomal enzyme activity is detected. McNeil, P.L., Tanasugarn, L., Meigs, J.B., Taylor, D.L. J. Cell Biol. (1983) [Pubmed]
  3. The effect of Mycobacterium bovis (Bacillus Calmette-Guérin) on macrophage random migration, chemotaxis, and pinocytosis. Poplack, D.G., Sher, N.A., Chaparas, S.D., Blaese, R.M. Cancer Res. (1976) [Pubmed]
  4. Neurochemical coupled actions of transmitters in the microvasculature of the brain. Palmer, G.C. Neuroscience and biobehavioral reviews. (1986) [Pubmed]
  5. Regulation of pinocytosis in murine macrophages by colony-stimulating factors and other agents. Knight, K.R., Vairo, G., Hamilton, J.A. J. Leukoc. Biol. (1992) [Pubmed]
  6. Analysis of the effect of amines on inhibition of receptor-mediated and fluid-phase pinocytosis in rabbit alveolar macrophages. Kaplan, J., Keogh, E.A. Cell (1981) [Pubmed]
  7. Translation of Xenopus liver messenger RNA in Xenopus oocytes: vitellogenin synthesis and conversion to yolk platelet proteins. Berridge, M.V., Lane, C.D. Cell (1976) [Pubmed]
  8. Regulation of receptor-mediated endocytosis by Rho and Rac. Lamaze, C., Chuang, T.H., Terlecky, L.J., Bokoch, G.M., Schmid, S.L. Nature (1996) [Pubmed]
  9. Naloxone-reversible effect of opioids on pinocytosis in Amoeba proteus. Josefsson, J.O., Johansson, P. Nature (1979) [Pubmed]
  10. Morphologic effect of dimethyl sulfoxide on the blood-brain barrier. Broadwell, R.D., Salcman, M., Kaplan, R.S. Science (1982) [Pubmed]
  11. Pinocytosis and locomotion of amoebae. XV. Visualization of Ca++-dynamics by chlorotetracycline (CTC) fluorescence during induced pinocytosis in living Amoeba proteus. Gawlitta, W., Stockem, W., Wehland, J., Weber, K. Cell Tissue Res. (1980) [Pubmed]
  12. Peptides as modifiers of Na+-induced pinocytosis in starved Amoeba proteus. Josefsson, J.O., Johansson, P. Peptides (1985) [Pubmed]
  13. Defects in cytokinesis, actin reorganization and the contractile vacuole in cells deficient in RhoGDI. Rivero, F., Illenberger, D., Somesh, B.P., Dislich, H., Adam, N., Meyer, A.K. EMBO J. (2002) [Pubmed]
  14. Rapid inhibition of pinocytosis in baby hamster kidney (BHK-21) cells following infection with vesicular stomatitis virus. Wilcox, D.K., Whitaker-Dowling, P.A., Youngner, J.S., Widnell, C.C. J. Cell Biol. (1983) [Pubmed]
  15. Cellular dimensions affecting the nucleocytoplasmic volume ratio. Swanson, J.A., Lee, M., Knapp, P.E. J. Cell Biol. (1991) [Pubmed]
  16. Neutrophil activation through high-affinity Fc gamma receptor using a monomeric antibody with unique properties. Akerley, W.L., Guyre, P.M., Davis, B.H. Blood (1991) [Pubmed]
  17. Kaposi's sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi's sarcoma patients. Uccini, S., Sirianni, M.C., Vincenzi, L., Topino, S., Stoppacciaro, A., Lesnoni La Parola, I., Capuano, M., Masini, C., Cerimele, D., Cella, M., Lanzavecchia, A., Allavena, P., Mantovani, A., Baroni, C.D., Ruco, L.P. Am. J. Pathol. (1997) [Pubmed]
  18. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. Maródi, L., Schreiber, S., Anderson, D.C., MacDermott, R.P., Korchak, H.M., Johnston, R.B. J. Clin. Invest. (1993) [Pubmed]
  19. Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts. Kaplan, A., Fischer, D., Achord, D., Sly, W. J. Clin. Invest. (1977) [Pubmed]
  20. Phorbol myristate acetate stimulates pinocytosis and membrane spreading in mouse peritoneal macrophages. Phaire-Washington, L., Wang, E., Silverstein, S.C. J. Cell Biol. (1980) [Pubmed]
  21. Selective iodination and polypeptide composition of pinocytic vesicles. Mellman, I.S., Steinman, R.M., Unkeless, J.C., Cohn, Z.A. J. Cell Biol. (1980) [Pubmed]
  22. L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages. Shepherd, V.L., Lee, Y.C., Schlesinger, P.H., Stahl, P.D. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  23. Linkage of azurophil granule secretion in neutrophils to chloride ion transport and endosomal transcytosis. Fittschen, C., Henson, P.M. J. Clin. Invest. (1994) [Pubmed]
  24. Quantitative studies of pinocytosis. I. Kinetics of uptake of (125I)polyvinylpyrrolidone by rat yolk sac cultured in vitro. Williams, K.E., Kidston, E.M., Beck, F., Lloyd, J.B. J. Cell Biol. (1975) [Pubmed]
  25. Macropinosome maturation and fusion with tubular lysosomes in macrophages. Racoosin, E.L., Swanson, J.A. J. Cell Biol. (1993) [Pubmed]
  26. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. Gonzalez-Noriega, A., Grubb, J.H., Talkad, V., Sly, W.S. J. Cell Biol. (1980) [Pubmed]
  27. Type 1 and type 2 cytokine regulation of macrophage endocytosis: differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10. Montaner, L.J., da Silva, R.P., Sun, J., Sutterwala, S., Hollinshead, M., Vaux, D., Gordon, S. J. Immunol. (1999) [Pubmed]
  28. Helicobacter pylori VacA cytotoxin: a probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Gauthier, N.C., Monzo, P., Kaddai, V., Doye, A., Ricci, V., Boquet, P. Mol. Biol. Cell (2005) [Pubmed]
  29. Inhibition of colony-stimulating factor-stimulated macrophage proliferation by tumor necrosis factor-alpha, IFN-gamma, and lipopolysaccharide is not due to a general loss of responsiveness to growth factor. Vairo, G., Argyriou, S., Knight, K.R., Hamilton, J.A. J. Immunol. (1991) [Pubmed]
  30. Role of thyroglobulin endocytic pathways in the control of thyroid hormone release. Marinò, M., McCluskey, R.T. Am. J. Physiol., Cell Physiol. (2000) [Pubmed]
  31. Actin assembly at membranes controlled by ARF6. Schafer, D.A., D'Souza-Schorey, C., Cooper, J.A. Traffic (2000) [Pubmed]
  32. HIV-1 infection induces functional alterations in human liver endothelial cells in primary culture. Lafon, M.E., Steffan, A.M., Royer, C., Jaeck, D., Beretz, A., Kirn, A., Gendrault, J.L. AIDS (1994) [Pubmed]
  33. Characterization of f-Met-Leu-Phe-stimulated fluid pinocytosis in human polymorphonuclear leukocytes by flow cytometry. Davis, B.H., McCabe, E., Langweiler, M. Cytometry. (1986) [Pubmed]
  34. NTBN, a free radical spin trap induces programmed cell death in human pancreatic cancer (PANC-1) cells. Anderson, K.M., Seed, T., Alrefai, W., Ou, D., Harris, J.E. Anticancer Res. (1998) [Pubmed]
 
WikiGenes - Universities