Axon regeneration inhibitors.
OBJECTIVE: To increase awareness of the advancements in nerve regeneration. METHODS: Review of the literature regarding inhibitors of nerve outgrowth and presentation of potential agents that reverse the inhibition, thereby promoting nerve regeneration. RESULTS: The injured adult central nervous system (CNS) inhibits axon outgrowth, thereby limiting recovery from traumatic injury. Axon regeneration inhibitors (ARIs) that contribute to inhibition of recovery include myelin-associated glycoprotein, Nogo, oligodendrocyte-myelin glycoprotein and chondroitin sulfate proteoglycans. The ARIs bind to specific receptors on the axon growth cone to halt outgrowth; consequently, reversing or blocking the actions of ARIs may promote recovery after CNS injury. Sialidase, an enzyme that cleaves one class of axonal receptors for myelin-associated glycoprotein, enhances spinal axon outgrowth into implanted peripheral nerve grafts in a rat model of brachial plexus avulsion, a traumatic injury in which nerve roots are torn from the spinal cord. CONCLUSION: Repair using peripheral nerve grafts is a promising restorative surgical treatment in humans, although functional improvement remains limited. Molecular therapies targeting ARIs may aid functional recovery after brachial plexus avulsion or other nervous system injuries and diseases.[1]References
- Axon regeneration inhibitors. Yang, L.J., Schnaar, R.L. Neurol. Res. (2008) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









