The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase-1 induction and blockade of activator protein-1.

Chalcones, a subclass of the flavonoid family, are widely known for their anti-inflammatory and anti-oxidative properties. In the present study, we synthesized the chalcone derivative, KB-34 (3-Phenyl-1-(2,4,6-tris (methoxymethoxy)phenyl)prop-2-yn-1-one), and examined its effect on nitric oxide (NO) production. KB-34 potently inhibited nitrite production in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). KB-34 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression, as assessed by Western blot and quantitative RT-PCR analyses. Treatment of cells with KB-34 significantly inhibited LPS-induced transcriptional activation by activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-kappaB (NF-kappaB) activity was not affected by KB-34, indicating that down-regulation of iNOS gene expression by KB-34 is mainly attributed by blockade of AP-1 activation. We also demonstrated that KB-34 treatment led to an increase in heme oxygenase-1 (HO-1) mRNA and protein expression, mediated by stimulating the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2). Treatment with SnPP, a selective inhibitor of HO-1, reversed the KB-34-mediated inhibition of nitrite production, suggesting that HO-1 plays an important role in the suppression of NO production by KB-34. In contrast, SnPP treatment did not counteract the KB-34-mediated suppression of AP-1 activity, suggesting that inhibition of AP-1 activation by KB-34 is independent of HO-1 induction. Taken together, these results indicate that KB-34 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via simultaneous induction of HO-1 expression and blockade of AP-1 activation. This study reveals that KB-34 would be a promising agent for the treatment of inflammation-associated disease.[1]

References

 
WikiGenes - Universities