The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity.

Carbonyl reductase (NADPH: secondary-alcohol oxidoreductase; EC 1.1.1.184), a widely distributed NADPH-dependent enzyme considered as both an aldo-keto reductase and a quinone reductase, was cloned from a human liver genomic library and transiently expressed in COS7 cells. The gene contains 3142 bases comprising three exons and two introns. The absence of a CAAT and TATA box and the presence of a GC-rich island are characteristic of many "housekeeping" genes. Transient expression of the genomic gene in COS7 cells using an expression vector containing an SV40 origin of replication resulted in a greater than 50-fold increase in both menadione reductase activity and daunorubicin reductase activity, suggesting that both activities are derived from the same enzyme. Carbonyl reductase mRNA levels reflected enzyme activity levels in the transfected cells. Other parameters, such as pH profile, cofactor requirements, substrates, and inhibitors, were similar to those of carbonyl reductase purified by other investigators. Potential regulatory elements with consensus sequences for two GC boxes and the transcriptional activator protein AP-2 were present upstream of the transcriptional start site. Although the precise role of carbonyl reductase is unknown, the enzyme is involved in drug metabolism and in the reduction of activated carbonyl compounds. Its ability to act as a quinone reductase also implies a potential to modulate oxygen free radicals.[1]

References

  1. Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity. Forrest, G.L., Akman, S., Doroshow, J., Rivera, H., Kaplan, W.D. Mol. Pharmacol. (1991) [Pubmed]
 
WikiGenes - Universities