tudor, a posterior-group gene of Drosophila melanogaster, encodes a novel protein and an mRNA localized during mid-oogenesis.
The tudor (tud) locus of Drosophila melanogaster is required during oogenesis for the formation of primordial germ cells and for normal abdominal segmentation. The tud locus was cloned, and its product was identified by Northern analysis of wild-type and tud mutant RNAs. The locus encodes a single mRNA of approximately 8.0 kb that is expressed throughout the life cycle, beginning in the early stages of germ-line development in the female. During oogenesis, tud mRNA appears to be present in the oocyte precursor within the germarial cysts, and in stages 1-3 it accumulates within the developing oocyte. The transcript is localized to the posterior half of the oocyte during oogenetic stages 4-7 but is not detectable within the ooplasm by egg deposition and throughout early embryogenesis. The tud protein has a predicted molecular mass of 285,000 daltons and has no distinctive sequence similarity to known proteins or protein structural motifs. Taken together, these results indicate that the tud product is a novel protein required during oogenesis for establishment of a functional center of morphogenetic activity in the posterior tip of the Drosophila embryo.[1]References
- tudor, a posterior-group gene of Drosophila melanogaster, encodes a novel protein and an mRNA localized during mid-oogenesis. Golumbeski, G.S., Bardsley, A., Tax, F., Boswell, R.E. Genes Dev. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg