The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson's disease.

Oxidative stress has been implicated in the etiology of Parkinson's disease (PD). The important biochemical features of PD, being profound deficit in dopamine (DA) content, reduced glutathione (GSH), and enhanced lipid peroxidation (LPO) in dopaminergic (DA-ergic) neurons resulting in oxidative stress, mitochondrial dysfunction and apoptosis. Rotenone-induced neurotoxicity is a well acknowledged preclinical model for studying PD in rodents as it produces selective DA-ergic neuronal degeneration. In our previous study, we have shown that chronic administration of rotenone to rats is able to produce motor dysfunction, which increases progressively with rotenone treatment and centrophenoxine (CPH) co-treatment is able to attenuate these motor defects. The present study was carried out to evaluate the antioxidant potential of CPH against rotenone-induced oxidative stress. Chronic administration of rotenone to SD rats resulted in marked oxidative damage in the midbrain region compared to other regions of the brain and CPH co-treatment successfully attenuated most of these changes. CPH significantly attenuated rotenone-induced depletion in DA, GSH and increase in LPO levels. In addition, the drug prevented the increase in nitric oxide (NO) and citrulline levels and also enhanced the activity of catalase and superoxide dismutase (SOD). Histological analysis carried out using hematoxylin and eosin staining has indicated severe damage to mid brain in comparison to cortex and cerebellum and this damage is attenuated by CPH co-treatment. Our results strongly indicate the possible therapeutic potential of centrophenoxine as an antioxidant in Parkinson's disease and other movement disorders where oxidative stress is a key player in the disease process.[1]

References

 
WikiGenes - Universities