The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins.

Periplasmic transport systems consist of a membrane-bound complex and a periplasmic substrate-binding protein and are postulated to function by translocating the substrate either through a nonspecific pore or through specific binding sites located in the membrane complex. We have isolated mutants carrying mutations in one of the membrane-bound components of the histidine permease of Salmonella typhimurium that allow transport in the absence of both histidine-binding proteins HisJ and LAO (lysine-, arginine-, ornithine-binding protein). All of the mutations are located in a limited region of the nucleotide-binding component of the histidine permease, HisP. The mutants transported substrate in the absence of binding proteins only when the membrane-bound complex was produced in large amounts. At low (chromosomal) levels, the mutant complex was unable to transport substrate in the absence of binding proteins but transported it efficiently in the presence of HisJ. The alterations responsible for the mutations were identified by DNA sequencing; they are closely related to a group of hisP mutations isolated as suppressors of HisJ interaction mutations (G. F.-L. Ames and E. N. Spudich, Proc. Natl. Acad. Sci. USA 73:1877-1881, 1976). The hisP suppressor mutations behaved similarly to these newly isolated mutations despite the entirely different selection procedure. The results are consistent with the HisP protein carrying or contributing to the existence of a substrate-binding site that can be mutated to function in the absence of a binding protein.[1]

References

 
WikiGenes - Universities