High-glucose and advanced glycosylation end products increased podocyte permeability via PI3-K/Akt signaling.
Regardless of the underlying disease, the proteinuric condition demonstrates ultrastructural changes in podocytes with retraction and effacement of the highly specialized interdigitating foot processes. To investigate how high-glucose (HG) and advanced glycosylation end products (AGE) induce podocyte phenotypical changes, including quantitative and distributional changes of zonula occludens (ZO)-1 protein and search for the signaling mechanisms, we cultured rat glomerular epithelial cells (GEpC) and mouse podocytes under: (1) normal glucose (5 mM, control); (2) HG (30 mM); (3) AGE-added; or (4) HG plus AGE-added conditions. HG plus AGE increased the permeability of monolayered GEpCs and induced ultrastructural separation between confluent GEpCs. ZO-1 moved to inner actin filament complexes in both AGE- and/or HG by confocal imaging. HG plus AGE-added condition also decreased ZO-1 protein amount and mRNA expression compared to normal glucose or osmotic control conditions. We could also confirm the induction of RAGE (receptor for AGE) and PI3-K/Akt signaling pathway by AGE and HG. In addition, LY294002, a PI3-K inhibitor, could prevent the quantitative and distributional changes of ZO-1 and RAGE and the increased permeability induced by HG and AGE. These findings suggest that diabetic conditions induce the podocyte ZO-1 changes via RAGE and PI3-K/Akt signaling, leading to increased permeability.[1]References
- High-glucose and advanced glycosylation end products increased podocyte permeability via PI3-K/Akt signaling. Ha, T.S. J. Mol. Med. (2010) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg