The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The antimycin-A-insensitive respiratory pathway of Candida parapsilosis: evidence for a second quinone involved specifically in its functioning.

The involvement of a quinone in the antimycin A-insensitive electron transfer from NADH-dehydrogenase to cytochrome c via the alternative respiratory chain of Candida parapsilosis, by-passing complex II, has been studied. After a partial extraction of quinones, the residual respiration was fully antimycin-A-sensitive, but reincorporation of the organic extract partially restored an antimycin A-insensitive respiration. Analysis of quinone content by HPLC, after purification by thin-layer chromatography, evidenced another quinone species in a very low amount. Myxothiazol and stigmatellin were shown to inhibit the alternative pathway but at a higher concentration than required to inhibit the classical pathway. Cytochrome spectra analysis showed that, in the presence of high myxothiazol concentrations, cytochromes c and aa3 were not reduced, while they were in the presence of antimycin A. It is suggested that the secondary pathway of C. parapsilosis involved a specific quinone pool which can be displaced from its binding site by high concentrations of myxothiazol or analogous compounds.[1]

References

 
WikiGenes - Universities